Microbial communities and chemical changes during fermentation of sugary Brazilian kefir

  • Karina Teixeira Magalhães
  • G. V. de M. Pereira
  • Disney Ribeiro Dias
  • Rosane Freitas Schwan
Original Paper

Abstract

The microorganisms associated with sugary Brazilian kefir beverage were investigated using a combination of culture-dependent and -independent methods. A total of 289 bacteria and 129 yeasts were identified via phenotypic and genotypic methods. Lb. paracasei (23.8%) was the major bacterial isolate identified, followed by Acetobacterlovaniensis (16.31%), Lactobacillus parabuchneri (11.71%), Lactobacillus kefir (10.03%) and Lactococcus lactis (10.03%). Saccharomyces cerevisiae (54.26%) and Kluyveromyces lactis (20.15%) were the most common yeast species isolated. Scanning electron microscopy showed that the microbiota was dominated by lemon-shaped yeast cells growing in close association with Lactobacillus (long and curved). Some lactic acid bacteria detected by sequence analysis of DGGE (denaturing gradient gel electrophoresis) bands were not recovered at any time through fermentation by plating. Conversely, DGGE fingerprints did not reveal bands corresponding to some of the species isolated by culturing methods. The bacteria Acetobacter lovaniensis and the yeast Kazachstania aerobia are described for the first time in sugary kefir. During the 24 h of fermentation, the concentration of lactic acid ranged from 0.2 to 1.80 mg/ml, and that of acetic acid increased from 0.08 to 1.12 mg/ml. The production of ethanol was limited, reaching a final mean value of 1.24 mg/ml.

Keywords

PCR-DGGE Culture-dependent and -independent methods Microbial community Lactobacillus Saccharomyces 

References

  1. Almeida EG, Rachid CCTC, Schwan RF (2007) Microbial population present in fermented beverage ‘cauim’ produced by Brazilian Amerindians. Int J Food Microbiol 120:146–151. doi:10.1016/j.ijfoodmicro.2007.06.020 CrossRefGoogle Scholar
  2. AOAC (1995) Official methods of analysis of the association of official analytical chemists, 16th edn. AOAC, WashingtonGoogle Scholar
  3. Barnett JA, Payne RW, Yarrow D (2000) Yeast—characteristic and identification. Cambrige University Press, CambrigeGoogle Scholar
  4. Beshkova DM, Simova ED, Frengova GI, Simov ZI, Dimitrov ZHO (2003) Production of volatile aroma compounds by kefir starter cultures. Int Dairy J 13:529–535. doi:10.1016/S0958-6946(03)00058-X CrossRefGoogle Scholar
  5. Chandler DP, Fredrickson JK, Brockman FG (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6:475–482CrossRefGoogle Scholar
  6. Cheirsilp B, Shoji H, Shimizu H, Shioya S (2003) Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J Biotechnol 100:43–53. doi:10.1016/S0168-1656(02)00228-6 CrossRefGoogle Scholar
  7. Chen HC, Wang SY, Chen MJ (2008) Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol 25:492–501. doi:10.1016/j.fm.2008.01.003 CrossRefGoogle Scholar
  8. Duarte WF, Dias DR, Pereira GVM, Gervásio IM, Schwan RF (2008) Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J Ind Microbiol Biotechnol 36:557–569. doi:10.1007/s10295-009-0526-y CrossRefGoogle Scholar
  9. Ercolini D, Moschetti G, Blaiotta G, Coppola S (2001) Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Curr Microbiol 42:199–202. doi:10.1007/s002840010204 CrossRefGoogle Scholar
  10. Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterization of kefir grains. J Dairy Res 68:639–652. doi:10.1017/S0022029901005210 CrossRefGoogle Scholar
  11. Giraffa G (2004) Studying the dynamics of microbial populations during food fermentation. FEMS Microbiol Rev 28:251–260. doi:10.1016/j.femsre.2003.10.005 CrossRefGoogle Scholar
  12. Guzel-Seydim Z, Wyffels JT, Sedydim AC, Greene AK (2005) Turkish Kefir and kefir grains: microbial enumeration and electron microscopic observation. Int J Dairy Technol 58:25–29. doi:10.1111/j.1471-0307.2005.00177.x CrossRefGoogle Scholar
  13. Hammes WP, Hertel C (2003) The genera Lactobacillus and Carnobacterium. In: Dworkin M, Flakow S, Rosenberg E, Schleifer KH, Stackbrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, release 3.15. Springer-Verlag, New York, NYGoogle Scholar
  14. Haruta S, Ueno S, Egawa I, Hashiguchi K, Fujii A, Nagano M, Ishii M, Igarashi Y (2006) Sucession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int J Food Microbiol 109:79–87. doi:0.1016/j.ijfoodmicro.2006.01.015 CrossRefGoogle Scholar
  15. Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  16. Jianzhong Z, Xiaoli L, Hanhu J, Mingsheng D (2009) Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol 26:770–775. doi:10.1016/j.fm.2009.04.009 CrossRefGoogle Scholar
  17. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRefGoogle Scholar
  18. Latorre-García L, del Castillo-Agudo L, Polaina J (2007) Taxonomical classification of yeasts isolated from kefir based on the sequence of their ribosomal RNA genes. World J Microbiol Biotechnol 23:785–791. doi:10.1007/s11274-006-9298-y CrossRefGoogle Scholar
  19. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., Acetobacter estunensis (Carr 1958) comb nov. J General Appl Microbiol 46:147–165. doi:10.2323/jgam.46.147 CrossRefGoogle Scholar
  20. Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanazawa R, Uchida K, Saito H, Yamaguchi H (1999) Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 37:920–924Google Scholar
  21. Naumova ES, YuV Ivannikova, Naumov GI (2004) Genetic differentiation of the sherry yeasts Saccharomyces cerevisiae. Appl Biochem Microbiol 41:578–582. doi:10.1007/s10438-005-0105-6 CrossRefGoogle Scholar
  22. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373Google Scholar
  23. Pidoux M (1989) The microbial flora of sugary kefir grain (the gingerbeer plant): biosynthesis of the grain from Lactobacillus hilgardii producing a polysaccharide gel. World J Microbiol Biotechnol 5:223–238. doi:10.1007/BF01741847 CrossRefGoogle Scholar
  24. Pidoux M, Marshall VM, Zanoni P, Brooker B (1990) Lactobacilli isolated from sugary kefir grains capable of polysaccharide production and minicell formation. J Appl Microbiol 69:311–320. doi:10.1111/j.1365-2672.1990.tb01521.x CrossRefGoogle Scholar
  25. Rahman N, Xiaohong C, Meiqin F, Mingsheng D (2009) Characterization of the dominant microflora in naturally fermented camel milk shubat. World J Microbiol Biotechnol 25:1941–1946. doi:10.1007/s11274-009-0092-5 CrossRefGoogle Scholar
  26. Schwan RF, Mendonça AT, JJ Silva Jr, Rodrigues V, Wheals AE (2001) Microbiology and physiology of cachaça (aguardente) fermentations. Anton Leeuw Int J G 79:89–96. doi:10.1023/A:1010225117654 CrossRefGoogle Scholar
  27. Schwan RF, Almeida EG, Souza Dias MAG, Jespersen L (2007) Yeast diversity in rice-cassava fermentations produced by the indigenous Tapirape people of Brazil. FEMS Yeast Res 7:966–972. doi:10.1111/j.1567-1364.2007.00241.x CrossRefGoogle Scholar
  28. Simova E, Beshkova D, Angelov A, Hristozova T, Frengova G, Spasov Z (2002) Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J Ind Microbiol Biotechnol 28:1–6. doi:10.1038/sj/jim/7000186 Google Scholar
  29. Simova E, Simov Z, Beshkova D, Frengova G, Dimitrov Z, Spasov Z (2006) Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them. Int J Food Microbiol 107:112–123. doi:10.1016/j.ijfoodmicro.2005.08.020 CrossRefGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  31. Wang X, Haruta S, Wang P, Ishii M, Igarashi Y, Cui Z (2006) Diversity stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol Ecol 57:106–115. doi:10.1111/j.1574-6941.2006.00099.x CrossRefGoogle Scholar
  32. Witthuhn RC, Schoeman T, Britz TJ (2004) Isolation and characterization of the microbial population of different South African kefir grains. Int J Dairy Technol 57:33–37. doi:10.1111/j.1471-0307.2004.00126.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Karina Teixeira Magalhães
    • 1
  • G. V. de M. Pereira
    • 1
  • Disney Ribeiro Dias
    • 2
  • Rosane Freitas Schwan
    • 1
  1. 1.Biology DepartmentFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.UnilavrasCentro Universitário de LavrasLavrasBrazil

Personalised recommendations