Skip to main content
Log in

Trehalose protects wine yeast against oxidation under thermal stress

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Accumulation of trehalose in yeasts has been suggested to be an important mechanism of tolerance against adverse stress conditions, particularly in thermal stress. However, under thermal stress, it is not clear if the mechanism of protection is related to its antioxidant role. In this study, a newly isolated wine yeast Saccharomyces cerevisia was used to examine the protective effect of trehalose against oxidation during thermal stress treatment. Cells were treated either with a mild heat treatment at 37°C (which leads to trehalose accumulation) or with a 50 mM trehalose solution and then exposed to a high temperature of 53°C. According to our results, mild heat treatment at 37°C and trehalose addition which promote accumulation of trehalose significantly increased cell survival upon exposure to thermal stress at 53°C which seems to be correlated with decrease in reactive oxygen species levels and lipid peroxidation. Trehalose could protect yeast from oxidative injuries under thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Allison SD, Chang B, Randolph TW, Carpenter JF (1999) Hydrogen bonding between sugar and protection is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 365:289–298

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388. doi:10.1016/j.plantsci.2006.04.009

    Article  CAS  Google Scholar 

  • Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1992) The Role of solvent viscosity in the dynamics of protein conformational changes. Science 256:1796–1798

    Article  CAS  Google Scholar 

  • Asker MMS, Ramadan MF, El-Aal SKA, El-Kady EMM (2009) Characterization of trehalose synthase from Corynebacterium nitrilophilus NRC. World J Microbiol Biotechnol 25:789–794. doi:10.1007/s11274-008-9950-9

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  Google Scholar 

  • Cardona F, Carrasco P, Pérea-Ortín JE, del Olmo ML, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114:83–91. doi:10.1016/j.ijfoodmicro.2006.10.043

    Article  CAS  Google Scholar 

  • Carvalheiro F, Roseiro JC, Gírio FM (1999) Interactive effects of sodium chloride and heat shock on trehalose accumulation and glycerol production by Saccharomyces cerevisiae. Food Microbiol 16:543–550

    Article  CAS  Google Scholar 

  • Cavazza A, Grando MS, Zini C (1992) Rilevazione della flora microbica di mosti e vini. Vignevini (9):17–20

  • Chiou TJ, Chu ST, Tzeng WF (2003) Protection of cells from menadione-induced apoptosis by inhibition of lipid peroxidation. Toxicology 191:77–88. doi:10.1016/S0300-483X(03)00189-6

    Article  CAS  Google Scholar 

  • Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22:217–246

    Article  CAS  Google Scholar 

  • Díaz MJ, Ruiz E, Romero I, Cara C, Moya M, Castro E (2009) Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol Biotechnol 25:891–899. doi:10.1007/s11274-009-9966-9

    Article  Google Scholar 

  • Ferreira JC, Thevelein JM, Hohmann S, Paschoalin VMF, Trugo LC, Panek AD (1997) Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in UDPG-dependent trehalose synthase-phosphatase complex. Biochim Biophys Acta 1335:40–50

    CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147(7):1851–1862

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322. doi:10.1104/pp.106.077073

    Article  CAS  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760:340–346. doi:10.1016/j.bbagen.2006.01.010

    CAS  Google Scholar 

  • Herrero E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235. doi:10.1016/j.bbagen.2007.12.004

    CAS  Google Scholar 

  • Ivannikova YV, Naumova ES, Naumov GI (2007) Viral dsRNA in the wine yeast Saccharomyces bayanus var. uvarum. Res Microbiol 158:638–643. doi:10.1016/j.resmic.2007.07.008

    Article  CAS  Google Scholar 

  • Jepsen HF, Jensen B (2004) Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response to heat or salt stress. Soil Biol Biochem 36:1669–1674. doi:10.1016/j.soilbio.2004.07.010

    Article  CAS  Google Scholar 

  • Kandror O, Bretschnelder N, Kreydln E, Cavallerl D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2, 4-Dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384. doi:10.1016/j.envexphot.2007.11.016

    Article  CAS  Google Scholar 

  • Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D (2004) Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4:711–719. doi:10.1016/j.femsyr.2004.01.006

    Article  CAS  Google Scholar 

  • Masneuf-Pomarède I, Mansour C, Murat M-L, Tominaga T, Dubourdieu D (2006) Influence of fermentation temperature on volatile thiols concentrations in Sauvibnon blanc wines. Int J Food Microbiol 108:385–390. doi:10.1016/j.ijfoodmicro.2006.01.001

    Google Scholar 

  • Pallmann CL, Brown JA, Olineka TL, Cocolin L, Mills DA, Bisson LF (2001) Use of WL medium to profile native flora fermentations. Am J Enol Vitic 52(3):198–203

    CAS  Google Scholar 

  • Parrou JL, Teste MA, Francios J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900

    Article  CAS  Google Scholar 

  • Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  Google Scholar 

  • Plourde-Owobi L, Durner S, Goma G, Francois J (2000) Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulatin and role in cell viability. Int J Food Microbiol 55:33–40

    Article  CAS  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, ZhH Lu, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4(1):8–14

    CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun (6):55–57

  • Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934. doi:10.1016/j.plantsci.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30611468) and major program of Beijing Municipal Science & Technology Commission (No. D07060500160701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, HL., Du, J. et al. Trehalose protects wine yeast against oxidation under thermal stress. World J Microbiol Biotechnol 26, 969–976 (2010). https://doi.org/10.1007/s11274-009-0258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0258-1

Keywords