Skip to main content
Log in

A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina)

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fibrinolytic enzyme production was evaluated in fungal specimens isolated from the sub-tropical Las Yungas Pedemontana forest (Tucumán, Argentina). Proteolytic and fibrinolytic activities were evaluated in freeze-thaw crude extracts from 230 fungal isolates on 1% w/v skimmed-milk or 0.25% w/v fibrin-agar plates, respectively. Proteolytic activity was positive in 62% of the isolates, whilst only three of them were able to produce extracellular fibrinolytic enzymes on solid nutritive medium. Fibrinolytic-positive extracts were able to degrade fibrin clots in a direct plasminogen-independent way. Selected isolates were identified by sequencing the 26S rDNA D1/D2 domain. Isolates LY 4.1 and LY 4.4 showed a 99.9% similarity with Bionectria ochroleuca, while LY 4.2 showed a 99.9% identity with Cladosporium cladosporioides. Under submerged culture conditions, LY 4.1 and LY 4.4 were able to excrete fibrinolytic enzymes, reaching a maximum at 120 h of cultivation of 100.2 and 107.9 U/ml in plasmin-equivalent units, respectively. Fibrinolytic enzyme production could be scaled-up to fermenter scale reaching similar values. Fibrin zymography showed that fibrinolytic activity was associated with ~173-, 153- and 80-kDa protein fractions. Extracellular fibrinolytic enzymes from Bionectria species may be potentially related to pathogenesis mechanisms, as already demonstrated for serine-proteases from the nematicidal anamorph Clonostachys rosea. This work reveals the potential of Bionectria strains as an unconventional and unexplored production alternative to already known thrombolytic agents. The value of Las Yungas forests as a reservoir of fungal species with promising biotechnological value could be also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Fattah AF, Ismail AMS (1984) Preparation and properties of fibrinolytic enzymes produced by Cochliobolus lunatus. Biotechnol Bioeng 26:37–40

    Article  CAS  Google Scholar 

  • Alves MH, Campos-Takaki GM, Figueiredo Porto AL, Milanez AI (2002) Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 33:325–330

    CAS  Google Scholar 

  • Amatayakul T (1955) The synthesis of fibrinolysin by fungi. Ohio J Sci 55:343–353

    CAS  Google Scholar 

  • Astrup T, Müllertz S (1952) The fibrin plate method for estimating of fibrinolytic activity. Arch Biochem Biophys 40:346–351

    Article  CAS  Google Scholar 

  • Batomunkueva BP, Egorov NS (2001) Isolation, purification, and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70:519–522

    Article  CAS  Google Scholar 

  • Bello CA, Hermogenes ALN, Magalhaes A, Veiga SS, Gremski LH, Richardson M, Sanchez EF (2006) Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie 88:189–200

    Article  CAS  Google Scholar 

  • Brown AD, Malizia LR (2004) Las Selvas Pedemontanas de las Yungas. Cienc Hoy 14:53–63

    Google Scholar 

  • Chang C-T, Fan M-H, Kuo F-C, Sung H-Y (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48:3210–3216

    Article  CAS  Google Scholar 

  • Chaverri P, Vílchez B (2006) Hypocrealean (Hypocreales, Ascomycota) fungal diversity in different stages of tropical forest succession in Costa Rica. Biotropica 38:531–543

    Article  Google Scholar 

  • Chitte RR, Dey S (2002) Production of a fibrinolytic enzyme by thermophilic Streptomyces species. World J Microbiol Biotechnol 18:289–294

    Article  CAS  Google Scholar 

  • Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    CAS  Google Scholar 

  • Cui L, Dong MS, Chen XH, Jiang M, Lv X, Yan G (2008) A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol 24:483–489

    Article  CAS  Google Scholar 

  • Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  CAS  Google Scholar 

  • González CF, Martínez MA, Vázquez F, Baigorí M, Figueroa LIC (1996) New method of screening and differentiation of exoenzymes from industrial strains. Biotechnol Tech 10:519–522

    Article  Google Scholar 

  • Grau A, Brown AD (2000) Development threats to biodiversity and opportunities for conservation in the mountain ranges of the Upper Bermejo River Basin, NW Argentina and SW Bolivia. Ambio 29(7):445–450

    Google Scholar 

  • Hirooka Y, Kobayashi T (2007) Taxonomic studies of nectrioid fungi in Japan. II: the genus Bionectria. Mycoscience 48:81–89

    Article  CAS  Google Scholar 

  • Hollander IJ (1987) Plasminogen activators and their potential in therapy. Crit Rev Biotechnol 6:253–271

    Article  CAS  Google Scholar 

  • Jeong YK, Park JU, Baek H, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17:89–92

    Article  CAS  Google Scholar 

  • Kim J-S, Sapkota K, Park S-E, Choi B-S, Kim S, Hiep NT, Kim C-S, Choi H-S, Kim M-K, Chun H-S, Park Y, Kim S-J (2006) A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol 44:622–631

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C 137:65–74

    Article  Google Scholar 

  • Lee S-Y, Kim J-S, Kim J-E, Sapkota K, Shen M-H, Kim S, Chun H-S, Yoo J-C, Choi H-S, Kim M-K, Kim S-J (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43:10–17

    Article  CAS  Google Scholar 

  • Li J, Yang J, Huang X, Zhang K-Q (2006) Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem 41:925–929

    Article  CAS  Google Scholar 

  • Lu F, Sun L, Lu Z, Bie X, Fang Y, Liu S (2007) Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr Microbiol 54:435–439

    Article  CAS  Google Scholar 

  • Luo J, Zhuang W-Y (2007) A new species and two new Chinese records of Bionectria (Bionectriacea, Hypocreales). Mycotaxon 101:315–323

    Google Scholar 

  • Maruñak SL, Acosta OC, Leiva LC, Ruiz RM, Aguirre MV, Teibler P (2004) Mice plasma fibrinogen consumption by thrombin-like enzyme present in rattlesnake venom from the north-east region of Argentina. Medicina (Buenos Aires) 64:509–517

    Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol B 125:137–143

    Article  CAS  Google Scholar 

  • Mine Y, Wong AHK, Jiang B (2005) Fibrinolytic enzymes in Asian traditional fermented foods. Food Res Int 38:243–250

    Article  CAS  Google Scholar 

  • Nakajima N, Mihara H, Sumi H (1993) Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotechnol Biochem 57:1726–1730

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Pajot H, Figueroa LIC, Fariña JI (2007) Dye-decolorizing activity in isolated yeasts from the ecoregion of Las Yungas (Tucumán, Argentina). Enzyme Microb Technol 40:1503–1511

    Article  CAS  Google Scholar 

  • Park Y-D, Kim J-W, Min B-G, Seo J-W, Jeong J-M (1998) Rapid purification and biochemical characteristics of lumbrokinase III from earthworm for use as a fibrinolytic agent. Biotechnol Lett 20:169–172

    Article  CAS  Google Scholar 

  • Peng Y, Yang X, Zhang Y (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69:126–132

    Article  CAS  Google Scholar 

  • Skaar I, Stenwig H (1996) Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage. Appl Environ Microbiol 62:3614–3619

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tao S, Peng L, Beihui L, Deming L, Zuohu L (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19:465–467

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Ueda M, Kubo T, Miyatake K, Nakamura T (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 74:331–338

    Article  CAS  Google Scholar 

  • Xiao-lan L, Lian-xiang D, Fu-ping L, Xi-qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67:209–214

    Article  Google Scholar 

  • Zhang L, Yang J, Niu Q, Zhao X, Ye F, Liang L, Zhang K-Q (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78:983–990

    Article  CAS  Google Scholar 

  • Zhuang W-Y, Nong Y, Luo J (2007) New species and new Chinese records of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Hubei, China. Fungal Divers 24:347–357

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from grants PICT 38164/05 (Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT), PIP 6202 (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET) and CIUNT D-311 (Universidad Nacional de Tucumán).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia I. Fariña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovati, J.I., Delgado, O.D., Figueroa, L.I.C. et al. A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina). World J Microbiol Biotechnol 26, 55–62 (2010). https://doi.org/10.1007/s11274-009-0142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0142-z

Keywords

Navigation