Skip to main content
Log in

The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of the morphology and differentiation of Aspergillus terreus hyphae on the formation of mevinolinic acid (lovastatin) and (+)-geodin was tested. Lovastatin titre was the highest (above 60 mg l−1) in the system with smaller pellets (diameter below 1.5 mm) and high biomass concentration (above 10 g l−1 in the idiophase). These biomass features were induced by the higher initial number of spores in the preculture (above 2 × 1010 l−1). At the initial number of spores below 2 × 109 l−1 (+)-geodin biosynthesis was the most efficient but it was rather connected with the elevated C/N ratio than with the pellet size. In order to quantify the hyphal differentiation in fungal pellets a special approach was used. The sectioning of the stained pellets together with the image analysis and calculation procedures were applied. The analysis of hyphal differentiation indicated that lovastatin formation was correlated with the fraction of the active, growing hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Askenazi M, Driggers EM, Holtzman DA et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2003) Morphologically structured model for growth and citric acid accumulation by Aspergillus niger. Enzyme Microb Technol 32:268–281

    Article  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2005) The influence of environmental factors on mycelial growth and biosynthesis of lovastatin by Aspergillus terreus. Biotechnologia-monografie 2(2):25–36 (in Polish)

    Google Scholar 

  • Bizukojc M, Ledakowicz S (2006) A kinetic model to predict biomass content for Aspergillus niger germinating spores in the submerged culture. Process Biochem 41:1063–1071

    Article  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2007a) A macrokinetic modelling of the biosynthesis of lovastatin by Aspergillus terreus. J Biotechnol 130:422–435

    Article  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2007b) Simultaneous biosynthesis of (+)-geodin by a lovastatin-producing fungus Aspergillus terreus. J Biotechnol 132:453–460

    Article  CAS  Google Scholar 

  • Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM et al (2003) Production of lovastatin by Aspergillus terreus: effects of C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Technol 33:270–277

    Article  CAS  Google Scholar 

  • Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM et al (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116:61–77

    Article  CAS  Google Scholar 

  • Couch RD, Gaucher GM (2004) Rational elimination of Aspergillus terreus sulochrin production. J Biotechnol 108:171–178

    Article  CAS  Google Scholar 

  • Freudenberg S, Fasold K-I, Mueller SR et al (1996) Fluorescent microscopic investigation of A. awamori growing on synthetic and complex media and producing xylanase. J Biotechnol 46:265–273

    Article  CAS  Google Scholar 

  • Gbewonyo K, Hunt G, Buckland B (1992) Interactions of cell morphology and transport processes in the lovastatin fermentation. Bioprocess Eng 8:1–7

    Article  CAS  Google Scholar 

  • Grimm LH, Kelly S, Hengstler J et al (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87:213–218

    Article  CAS  Google Scholar 

  • Hajjaj H, Niederberger P, Duboc P (2001) Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl Env Microbiol 67:2596–2602

    Article  CAS  Google Scholar 

  • Hamanaka T, Higashiyama K, Fujikawa S, Park EY (2001) Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Appl Microbiol Biotechnol 56:233–238

    Article  CAS  Google Scholar 

  • Hille A, Neu TR, Hempel DC, Horn H (2005) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng 92:614–623

    Article  CAS  Google Scholar 

  • Lai L-S, Pan C-C, Tzeng B-K (2003) The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem 38:1317–1326

    Article  CAS  Google Scholar 

  • Metz B, Kossen NWF (1977) The growth of molds in the form of pellets a literature review. Biotechnol Bioeng 14:781–799

    Article  Google Scholar 

  • Monaghan RL, Alberts AW, Hoffman CH, Albers-Schonberg G (1980) Hypocholesterolemic fermentation products and process of preparation. United States Patent 4,231,938

  • Nielsen J, Krabben P (1995) Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotechnol Bioeng 46:588–598

    Article  CAS  Google Scholar 

  • Nielsen J, Johansen CL, Jacobsen M et al (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    Article  CAS  Google Scholar 

  • Novak N, Gerdin S, Berovic M (1997) Increased lovastatin formation using repeated fed-batch process. Biotechnol Lett 19:947–948

    Article  CAS  Google Scholar 

  • Park Y, Tamura S, Koike Y et al (1997) Mycelial pellet intrastructure visualization and viability prediction in a culture of Streptomyces fradiae using Confocal Scanning Laser Microscopy. J Ferment Bioeng 84:483–486

    Article  CAS  Google Scholar 

  • Paul GC, Thomas CR (1996) A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol Bioeng 51:558–572

    Article  CAS  Google Scholar 

  • Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. Adv Biochem Eng/Biotechnol 60:1–59

    Article  CAS  Google Scholar 

  • Paul GC, Kent CA, Thomas CR (1993) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42:11–23

    Article  CAS  Google Scholar 

  • Paul GC, Kent CA, Thomas CR (1994) Image analysis for characterizing differentiation of Penicillium chrysogenum. Trans IChemE (Part C) 72:95–105

    Google Scholar 

  • Pirt SJ (1966) A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proc R Soc London, Ser B 166:369–373

    Article  CAS  Google Scholar 

  • Rodriguez Porcel EM, Casas Lopez JL, Sanchez Perez JA et al (2005) Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochem Eng J 26:139–144

    Article  CAS  Google Scholar 

  • Rodriguez Porcel E, Casas Lopez JL, Vilches Ferron MA et al (2006) Effects of the sporulation conditions on the lovastatin production by Aspergillus terreus. Bioproc Biosys Eng 29:1–5

    Article  Google Scholar 

  • Schuegerl K, Gerlach SR, Siedenberg D (1998) Influence of process parameters on the morphology and enzyme production of Aspergilli. Adv Biochem Eng Biotechnol 60:195–266

    Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  CAS  Google Scholar 

  • Sitaram Kumar M, Jana SK, Senthil V et al (2000) Repeated fed-batch process for improving lovastatin production. Process Biochem 36:363–368

    Article  Google Scholar 

  • Slaba M, Bizukojc M, Palecz B, Dlugonski J (2005) Kinetic study of the toxicity of zinc and lead ions to the heavy metal accumulating fungus Paecilomyces marquandii. Bioproc Biosys Eng 28:185–197

    Article  CAS  Google Scholar 

  • Sutherland A, Auclair K, Vederas JC (2001) Recent advances in the biosynthetic studies of lovastatin. Curr Opin Drug Discov Develop 4:229–236

    CAS  Google Scholar 

  • Tucker KG, Thomas CR (1992) Mycelial morphology: the effect of spore inoculum level. Biotechnol Lett 14:1071–1074

    Article  Google Scholar 

  • Tucker KG, Thomas CR (1994) Inoculum effects on fungal morphology: shake flasks vs. agitated bioreactors. Biotechnol Techn 8:153–156

    Article  CAS  Google Scholar 

  • Vanhoutte B, Pons MN, Thomas CR et al (1995) Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol Bioeng 48:1–11

    Article  CAS  Google Scholar 

  • Zangirolami TC, Johansen CL, Nielsen J, Jorgensen SB (1997) Simulation of penicillin production in fed-batch cultivations using a morphologically structured model. Biotechnol Bioeng 56:593–604

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge Prof. Isao Fujii from University of Tokyo (Japan) for his kind donation of the sample of (+)-geodin. This work was financed from grant no. 3 T09C 013 28 realised from 2005 to 2007 (Ministry of Scientific Research and Information Technology, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bizukojc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizukojc, M., Ledakowicz, S. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World J Microbiol Biotechnol 26, 41–54 (2010). https://doi.org/10.1007/s11274-009-0140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0140-1

Keywords

Navigation