Skip to main content

Advertisement

Log in

Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Through selective enrichment of atrazine-metabolizing microorganisms, a microbial community was selected from agricultural soil. Bacterial isolates, identified by their closest similarity with 16S rDNA sequences stored in NCBI GeneBank, belonged to the genera: Massilia, Stenotrophomonas, Klebsiella, Sphingomonas, Ochrobactrum, Arthrobacter, Microbacterium, Xanthomonas and Ornithinimicrobium. From these strains, only the first six used atrazine as nitrogen and carbon source. The microbial community attached to a non-porous support was evaluated for its atrazine biodegradation rate and removal efficiency under aerobic conditions in two types of packed-bed biofilm reactors fed with a mineral salt medium containing glucose plus atrazine, or atrazine as the sole carbon and nitrogen source. Removal efficiencies near 100% were obtained at loading rates up to 10 mg l−1 h−1. After long periods of continuous operation, the richness of microbial species in biofilm reactors diminished to only three bacterial strains; Stenotrophomonas sp., Ochrobactrum sp. and Arthrobacter sp. By PCR analysis of their DNA, the presence of atzABC genes codifying for the enzymes of the upper catabolic pathway of atrazine, was confirmed in the three strains. The gene atzD that encodes for the cyanuric acid amidohydrolase enzyme was detected only in Stenotrophomonas sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan VJM, Callow ME, Macaskie LE, Paterson-Beedle M (2002) Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp. Microbiology 148:277–288

    CAS  Google Scholar 

  • Andersson S, Dalhammar G, Land CJ, Kuttuva Rajarao G (2009) Characterization of extracellular polymeric substances from denitrifying organism Comamonas denitrificans. Appl Microbiol Biotechnol 82(3):535–543

    Article  CAS  Google Scholar 

  • Beech I, Hanjagsit L, Kalaji M, Neal AL, Zinkevich V (1999) Chemical, structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology 145(6):1491–1497

    Article  CAS  Google Scholar 

  • Behki RM, Khan SU (1986) Degradation of atrazine by PseudomonasN–dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34(4):746–749

    Article  CAS  Google Scholar 

  • Boundy-Mills KL, De Souza ML, Mandelbaum RT, Wackett LP, Sadowsky MJ (1997) The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl Environ Microbiol 63(3):916–923

    CAS  Google Scholar 

  • Bouquard C, Ouazzani J, Prome JC, MichelBriand Y, Plesiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63(3):862–866

    CAS  Google Scholar 

  • Cantemir C, Cozmei C, Scutaru B, Nicoara S, Carasevici E (1997) p53 protein expression in peripheral lymphocytes from atrazine chronically intoxicated rats. Toxicol Lett 93(2–3):87–94

    Article  CAS  Google Scholar 

  • Chan CY, Tao S, Dawson R, Wong PK (2004) Treatment of atrazine by integrating photocatalytic and biological processes. Environ Pollut 131(1):45–54

    Article  CAS  Google Scholar 

  • Chen B, Li YF, Huang G, Struger J, Zhang BY, Wu SM (2003) Modelling of atrazine loss in surface runoff from agricultural watershed. Water Qual Res J Can 38(4):585–606

    CAS  Google Scholar 

  • De Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ, Wackett LP (1998a) Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Appl Environ Microbiol 64(1):178–184

    Google Scholar 

  • De Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998b) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180(7):1951–1954

    Google Scholar 

  • Dries D, De Corte B, Liessens J, Steurbaut W, Dejonckhere W, Verstraete W (1987) Recalcitrance of atrazine at low levels to aerobic and hydrogenotrophic micro-organisms. Biotechnol Lett 9(11):811–816

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  CAS  Google Scholar 

  • Farré MJ, Franch MI, Malato S, Ayllón JA, Peral J, Doménech X (2005) Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere 58(8):1127–1133

    Article  Google Scholar 

  • Fatima M, Mandiki SNM, Douxfils J, Silvestre F, Coppe P, Kestemont P (2007) Combined effects of herbicides on biomarkers reflecting immune–endocrine interactions in goldfish Immune and antioxidant effects. Aquat Toxicol 81:159–167

    Article  CAS  Google Scholar 

  • Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947

    Article  CAS  Google Scholar 

  • Fränzle O, Straskrava M, Jorgensen SE (2002) Ecology and toxicology. Ullmann′s Encyclopededia of Industrial Chemistry, 6th edn. Wiley-VCH, Weinheim (2002 electronic release)

    Google Scholar 

  • Fruchey I, Shapir N, Sadowsky MJ, Wackett LP (2003) On the origins of cyanuric acid hydrolase: purification, substrates and prevalence of AtzD from Pseudomonas sp. strain ADP. Appl Environ Microbiol 69:3653–3657

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez V, Govantes F, Perrua O, Santero E (2005) Regulation of the Pseudomonas sp. strain ADP cyanuric acid degradation operon. J Bacteriol 187:155–167

    Article  CAS  Google Scholar 

  • Ghosh PK, Philip L (2006) Environmental significance of atrazine in aqueous systems and its removal by biological processes: an overview. Glob NEST J 8(2):159–178

    Google Scholar 

  • Gómez-De Jesús A, Romano-Baez FJ, Leyva-Amezcua L, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez-Mayer J (2009) Biodegradation of 2, 4, 6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J Hazard Mat 161(2–3):1140–1149

    Article  Google Scholar 

  • Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci USA 99:5476–5480

    Article  CAS  Google Scholar 

  • Horikoshi S, Hidaka H (2003) Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the UV-illuminated photocatalytic cooperation. Chemosphere 51(2):139–142

    Article  CAS  Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61(4):1451–1457

    CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183(19):5684–5697

    Article  CAS  Google Scholar 

  • Palmer M, Wackett LP, Sajjaphan K, Shapir N, Blackmon B, Tomkin J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 Atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70(7):4402–4407

    Article  Google Scholar 

  • Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61(1):297–302

    CAS  Google Scholar 

  • Ralebitso-Senior TK, Costa C, Röling WFM, Braster M, Senior E, van Verseveld HW (2003) Atrazine catabolism by a combined bacterial association (KRA30) under carbon- and nitrogen-limitations in a retentostat. J Appl Microbiol 94:1043–1051

    Article  CAS  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing HD, Smith TF, Tenover CF, White ST (eds) Diagnostic molecular microbiology. Principles and applications. American Chemical Society, Washington, DC

    Google Scholar 

  • Rhine ED, Fuhrmann JJ, Radosevich M (2003) Microbial community responses to atrazine exposure and nutrient availability: linking degradation capacity to community structure. Microb Ecol 46:145–160

    Article  CAS  Google Scholar 

  • Rodríguez EM, Álvarez PM, Rivas FJ, Beltrán FJ (2004) Wet peroxide degradation of atrazine. Chemosphere 54(1):71–78

    Article  Google Scholar 

  • Rudra RP, Negi SC, Gupta N (2005) Modelling approaches for subsurface drainage water quality management. Water Qual Res J Can 40(1):71–81

    CAS  Google Scholar 

  • Russo J, Lagidick L (2004) Effects of environmental concentrations of atrazine on hemocyte density and phagocytic activity of pond snails Lymnea stagnalis. Environ Pollut 127:303–311

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Tong ZK, De Souza M, Wackett LP (1998) AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J Bacteriol 180(1):152–158

    CAS  Google Scholar 

  • Strong CL, Rosendahl C, Johnson G, Sadowsky JM, Wacket LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980

    Article  CAS  Google Scholar 

  • Sullivan KB, Spence KM (2003) Effects of sublethal concentrations of atrazine and nitrate on metamorphosis of the African clawed frog. Environ Toxicol Chem 22:627–635

    Article  CAS  Google Scholar 

  • Tafoya-Garnica A, Macías-Flores A, Ruiz-Ordaz N, Juárez-Ramírez C, Galíndez-Mayer J (2009) Kinetics of atrazine biodegradation by suspended and immobilized mixed microbial cells cultivated in continuous systems. J Chem Technol Biotechnol. 84(7):982–991. doi:10.1002/jctb.2121

    Article  CAS  Google Scholar 

  • Thompson LJ, Gray V, Lindsay D, von Holy A (2006) Carbon:nitrogen:phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. J Appl Microbiol 101(5):1105–1113

    Article  CAS  Google Scholar 

  • Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000) Characterization of an atrazine-degrading Pseudoaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66(7):2773–2782

    Article  CAS  Google Scholar 

  • Vibber LL, Pressler MJ, Colores GM (2007) Isolation and characterization of novel atrazine-degrading microorganisms from an agricultural soil. Appl Microbiol Biotechnol 75:921–928

    Article  CAS  Google Scholar 

  • Wacket LP, Sadowsky MJ, Martinez B, Shapir N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45

    Article  Google Scholar 

  • Wang C-T, Peretti SW, Bryers JD (2004) Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol Bioeng 44(3):329–336

    CAS  Google Scholar 

  • Wenk M, Baumgartner T, Dobovsek J, Fuchs T, Kucsera J, Zopfi J, Stucki G (1998) Rapid atrazine mineralisation in soil slurry and moist soil by inoculation of an atrazine-degrading Pseudomonas sp. strain. Appl Microbiol Biotechnol 49:624–630

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juvencio Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macías-Flores, A., Tafoya-Garnica, A., Ruiz-Ordaz, N. et al. Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J Microbiol Biotechnol 25, 2195–2204 (2009). https://doi.org/10.1007/s11274-009-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0125-0

Keywords

Navigation