Skip to main content

Advertisement

Log in

Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The in vitro influence of three prebiotics viz. mannitol, maltodextrin and sorbitol was evaluated on probiotic aspects like bile salt tolerance, cholesterol lowering efficiency and bacteriocin production of the strain, Pediococcus acidilactici LAB 5 which was isolated from vacuum packed fermented meat product. Optimum temperature for bacteriocin production in MRS medium was 37°C. The strain deconjugated bile salt (sodium taurocholate) to 607.66 ± 10.894 μg/ml from initial bile salt concentration 3 mg/ml. In vitro cholesterol removal capability of the strain P. acidilactici LAB 5 was 62 ± 2.742 μg/ml. Prebiotic sorbitol had a positive influence on the probiotic parameters like better cell growth, bacteriocin production and cholesterol removal capability. Anaerobic condition had influenced largely on bile salt deconjugation, cholesterol removal and bacteriocin production. Synbiotic treatment of P. acidilactici LAB 5 with sorbitol for 1 month lowered the plasma cholesterol level to 176.34 ± 12.66 μg/ml in comparison to untreated one (208.76 ± 20.27 μg/ml) in Swiss albino mice. Intestinal adherence of P. acidilactici LAB 5 was also more in synbiotic condition than only in probiotic and control treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal N, Kamra DN, Chaudhary LC et al (2000) Selection of Saccharomyces cerevisiae strains for use as a microbial feed additive. Lett Appl Microbiol 31:270–273

    Article  CAS  Google Scholar 

  • Anderson JW, Gilliland SE (1999) Effect of fermented milk (Yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am College Nutr 18:43–50

    CAS  Google Scholar 

  • Annuk H, Shchepetova J, Kullisaar T et al (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412

    Article  CAS  Google Scholar 

  • Bandopadhyay A, Moulik SP (1988) Interaction of bile salts with a nonionic surfactants and their activation energy for conduction as well as calcium and barium ion tolerance in presence of the nonionic surfactant. Ind J Biochem Biophys 25:287–291

    Google Scholar 

  • Baron SF, Hylemon PB (1997) Biotransformation of bile acids, cholesterol, and steroid hormones. In: Mackie RI, White BA (eds) Gastrointestinal microbiology. Vol. I. Gastrointestinal ecosystems and fermentations. International Thomson Publishing, New York, pp 470–510

    Google Scholar 

  • Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  Google Scholar 

  • Begley M, Hill C, Gahan CGM (2006) Bile sat hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 65:261–268

    CAS  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B et al (1990) Antigenic property of pediocin AcH produced by Pediococcusacidilactici H. J Appl Bacteriol 69:211–215

    CAS  Google Scholar 

  • Brashears MM, Gilliland SE, Buck LM (1998) Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Appl Environ Microbiol 81:2103–2110

    CAS  Google Scholar 

  • Chowdhury R, Sahu GK, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160

    Article  CAS  Google Scholar 

  • Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052S–1057S

    CAS  Google Scholar 

  • Corzo G, Gilliland SE (1999) Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J Dairy Sci 82:466–471

    Article  CAS  Google Scholar 

  • Crittenden RG (1999) Prebiotics. In: Tannock GW (ed) Probiotics: a critical review. Horizon Scientific Press, Wymondham, pp 141–156

    Google Scholar 

  • Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase active Lactobacillus spp. Appl Environ Microbiol 55:11–16

    CAS  Google Scholar 

  • De Boever P, Verstraete W (1999) Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol 87:345–352

    Article  Google Scholar 

  • Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  Google Scholar 

  • Fuller R (1991) Probiotics in human medicine. Gut 32:439–442

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid B (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  • Gilliland SE, Speck MJ (1977) Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol 33:15–18

    CAS  Google Scholar 

  • Golledge CL, Stingemore N, Aravena M et al (1990) Septicemia caused by vancomycin-resistant Pediococcus acidilactici. J Clin Microbiol 28:1678–1679

    CAS  Google Scholar 

  • Gonzalez CF, Kunka BS (1987) Plasmid associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 53:2534–2538

    CAS  Google Scholar 

  • Hosono A (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248

    Google Scholar 

  • Irvin JL, Johnston CG, Kopala J (1944) A photometric method of the determination of cholates in bile and blood. J Biol Chem 153:439–457

    CAS  Google Scholar 

  • Jin LZ, Ho YW, Abdullah N et al (1998) Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Micriobiol 27:183–185

    Article  CAS  Google Scholar 

  • Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eu J Pharma Sci 15:1–9

    Article  CAS  Google Scholar 

  • Kimmey MB, Elmer GW, Surawicz CM et al (1990) Prevention of further recurrences of Clostridium difficile colitis with Saccharomyces boulardii. Dig Dis Sci 35:897–901

    Article  CAS  Google Scholar 

  • Kimoto H, Ohmomo S, Okamoto T (2002a) Enhancement of bile tolerance in lactococci by Tween 80. J Appl Microbiol 92:41–46

    Article  CAS  Google Scholar 

  • Kimoto H, Ohmomo S, Okamoto T (2002b) Cholesterol removal from media by Lactococci. J Dairy Sci 85:3182–3188

    Article  CAS  Google Scholar 

  • Lee SH, Lillehoj HS, Dalloul RA et al (2007) Influence of Pediococcus based probiotic on coccodiosis in broiler chickens. Poult Sci 86:63–66

    CAS  Google Scholar 

  • Lim HJ, Kim SY, Lee WK (2004) Isolation of cholesterol lowering lactic acid bacteria from human intestine for probiotic use. J Vet Sci 5:391–395

    Google Scholar 

  • Liong MT, Shah NP (2005a) Acid and bile tolerance and cholesterol removal ability of Lactobacillus strains. J Dairy Sci 88:55–66

    CAS  Google Scholar 

  • Liong MT, Shah NP (2005b) Optimization of cholesterol removal by probiotics in the presence of prebiotics by using a response surface method. Appl Environ Microbiol 71:1745–1753

    Article  CAS  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2008) Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization. Ind J Biochem Biophys 45:106–110

    CAS  Google Scholar 

  • Manson JE, Tosteson H, Ridker PM et al (1992) The primary prevention of myocardial infarction. New Eng J Med 326:1406–1416

    CAS  Google Scholar 

  • Mastro TD, Spika JS, Lozano P et al (1990) Vancomycin-resistant Pediococcus acidilactici: nine cases of bacteremia. J Infect Dis 161:956–960

    CAS  Google Scholar 

  • Oksanen PJ, Salminen S, Saxelin M et al (1990) Prevention of travellers’ diarrhea by Lactobacillus GG. Ann Med 22:53–56

    Article  CAS  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Ant Van Leeuwenhoek 82:279–289

    Article  CAS  Google Scholar 

  • Pereira DI, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37:259–281

    Article  CAS  Google Scholar 

  • Ray B, Miller KW (2000) Natural Food Antimicrobial Systems. Naidu AS (ed). CRC Press Inc, Boca Raton

  • Ray B, Schamber R, Miller KW (1999) The pediocin AcH precursor is biologically active. Appl Environ Microbiol 65:2281–2286

    CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  Google Scholar 

  • Rudel LL, Morris MD (1973) Determination of cholesterol using o-phthalaldehyde. J Lipid Res 14:364–366

    CAS  Google Scholar 

  • Sarem-Damerdji L, Sarem F, Marchel L et al (1995) In vitro colonization ability of human colon mucosa by exogenous Lactobacillus strains. FEMS Microbiol Lett 131:133–137

    Article  CAS  Google Scholar 

  • Schved F, Lalazar A, Henis Y et al (1993) Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 74:67–77

    CAS  Google Scholar 

  • Siitonen S, Vapaatalo H, Salminen S et al (1990) Effect of Lactobacillus GG yogurt in prevention of antibiotic-associated diarrhea. Ann Med 22:57–59

    Article  CAS  Google Scholar 

  • Sire JM, Donnio PY, Mensard R et al (1992) Septicemia and hepatic abscess caused by Pediococcus acidilactici. Eur J Clin Microbiol Infect 11:623–625

    Article  CAS  Google Scholar 

  • Tuohy KM, Probert HM, Smejkal CW et al (2003) Using probiotics and prebiotics to improve gut health. Drug Discov Today 8:692–700

    Article  Google Scholar 

  • Voet D, Voet J, Pratt CW (2002) Fundamentals of biochemistry. Wiley, Hoboken, p 264

    Google Scholar 

  • Walker DR, Gilliland SE (1993) Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76:956–961

    Article  CAS  Google Scholar 

  • Zhang M, Xiaomin H, Xiaobing F et al (2008) Characterization and selection of Lactobacillus strains for their effect on bile tolerance, taurocholate deconjugation and cholesterol removal. World J Microbial Biotechnol 24:7–14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekananda Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, V., Sen, S.K. & Mandal, N.C. Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World J Microbiol Biotechnol 25, 1837–1847 (2009). https://doi.org/10.1007/s11274-009-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0085-4

Keywords

Navigation