Advertisement

World Journal of Microbiology and Biotechnology

, Volume 25, Issue 10, pp 1837–1847 | Cite as

Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5

  • Vivekananda MandalEmail author
  • Sukanta Kumar Sen
  • Narayan Chandra Mandal
Original Paper

Abstract

The in vitro influence of three prebiotics viz. mannitol, maltodextrin and sorbitol was evaluated on probiotic aspects like bile salt tolerance, cholesterol lowering efficiency and bacteriocin production of the strain, Pediococcus acidilactici LAB 5 which was isolated from vacuum packed fermented meat product. Optimum temperature for bacteriocin production in MRS medium was 37°C. The strain deconjugated bile salt (sodium taurocholate) to 607.66 ± 10.894 μg/ml from initial bile salt concentration 3 mg/ml. In vitro cholesterol removal capability of the strain P. acidilactici LAB 5 was 62 ± 2.742 μg/ml. Prebiotic sorbitol had a positive influence on the probiotic parameters like better cell growth, bacteriocin production and cholesterol removal capability. Anaerobic condition had influenced largely on bile salt deconjugation, cholesterol removal and bacteriocin production. Synbiotic treatment of P. acidilactici LAB 5 with sorbitol for 1 month lowered the plasma cholesterol level to 176.34 ± 12.66 μg/ml in comparison to untreated one (208.76 ± 20.27 μg/ml) in Swiss albino mice. Intestinal adherence of P. acidilactici LAB 5 was also more in synbiotic condition than only in probiotic and control treatments.

Keywords

Bacteriocin Bile salt deconjugation Cholesterol Pediococcusacidilactici LAB 5 Prebiotics Synbiotic 

References

  1. Agarwal N, Kamra DN, Chaudhary LC et al (2000) Selection of Saccharomyces cerevisiae strains for use as a microbial feed additive. Lett Appl Microbiol 31:270–273CrossRefGoogle Scholar
  2. Anderson JW, Gilliland SE (1999) Effect of fermented milk (Yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am College Nutr 18:43–50Google Scholar
  3. Annuk H, Shchepetova J, Kullisaar T et al (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412CrossRefGoogle Scholar
  4. Bandopadhyay A, Moulik SP (1988) Interaction of bile salts with a nonionic surfactants and their activation energy for conduction as well as calcium and barium ion tolerance in presence of the nonionic surfactant. Ind J Biochem Biophys 25:287–291Google Scholar
  5. Baron SF, Hylemon PB (1997) Biotransformation of bile acids, cholesterol, and steroid hormones. In: Mackie RI, White BA (eds) Gastrointestinal microbiology. Vol. I. Gastrointestinal ecosystems and fermentations. International Thomson Publishing, New York, pp 470–510Google Scholar
  6. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRefGoogle Scholar
  7. Begley M, Hill C, Gahan CGM (2006) Bile sat hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738CrossRefGoogle Scholar
  8. Bhunia AK, Johnson MC, Ray B (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 65:261–268Google Scholar
  9. Bhunia AK, Johnson MC, Ray B et al (1990) Antigenic property of pediocin AcH produced by Pediococcusacidilactici H. J Appl Bacteriol 69:211–215Google Scholar
  10. Brashears MM, Gilliland SE, Buck LM (1998) Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Appl Environ Microbiol 81:2103–2110Google Scholar
  11. Chowdhury R, Sahu GK, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160CrossRefGoogle Scholar
  12. Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052S–1057SGoogle Scholar
  13. Corzo G, Gilliland SE (1999) Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J Dairy Sci 82:466–471CrossRefGoogle Scholar
  14. Crittenden RG (1999) Prebiotics. In: Tannock GW (ed) Probiotics: a critical review. Horizon Scientific Press, Wymondham, pp 141–156Google Scholar
  15. Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase active Lactobacillus spp. Appl Environ Microbiol 55:11–16Google Scholar
  16. De Boever P, Verstraete W (1999) Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol 87:345–352CrossRefGoogle Scholar
  17. Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455CrossRefGoogle Scholar
  18. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378Google Scholar
  19. Fuller R (1991) Probiotics in human medicine. Gut 32:439–442CrossRefGoogle Scholar
  20. Gibson GR, Roberfroid B (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  21. Gilliland SE, Speck MJ (1977) Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol 33:15–18Google Scholar
  22. Golledge CL, Stingemore N, Aravena M et al (1990) Septicemia caused by vancomycin-resistant Pediococcus acidilactici. J Clin Microbiol 28:1678–1679Google Scholar
  23. Gonzalez CF, Kunka BS (1987) Plasmid associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 53:2534–2538Google Scholar
  24. Hosono A (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248Google Scholar
  25. Irvin JL, Johnston CG, Kopala J (1944) A photometric method of the determination of cholates in bile and blood. J Biol Chem 153:439–457Google Scholar
  26. Jin LZ, Ho YW, Abdullah N et al (1998) Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Micriobiol 27:183–185CrossRefGoogle Scholar
  27. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eu J Pharma Sci 15:1–9CrossRefGoogle Scholar
  28. Kimmey MB, Elmer GW, Surawicz CM et al (1990) Prevention of further recurrences of Clostridium difficile colitis with Saccharomyces boulardii. Dig Dis Sci 35:897–901CrossRefGoogle Scholar
  29. Kimoto H, Ohmomo S, Okamoto T (2002a) Enhancement of bile tolerance in lactococci by Tween 80. J Appl Microbiol 92:41–46CrossRefGoogle Scholar
  30. Kimoto H, Ohmomo S, Okamoto T (2002b) Cholesterol removal from media by Lactococci. J Dairy Sci 85:3182–3188CrossRefGoogle Scholar
  31. Lee SH, Lillehoj HS, Dalloul RA et al (2007) Influence of Pediococcus based probiotic on coccodiosis in broiler chickens. Poult Sci 86:63–66Google Scholar
  32. Lim HJ, Kim SY, Lee WK (2004) Isolation of cholesterol lowering lactic acid bacteria from human intestine for probiotic use. J Vet Sci 5:391–395Google Scholar
  33. Liong MT, Shah NP (2005a) Acid and bile tolerance and cholesterol removal ability of Lactobacillus strains. J Dairy Sci 88:55–66Google Scholar
  34. Liong MT, Shah NP (2005b) Optimization of cholesterol removal by probiotics in the presence of prebiotics by using a response surface method. Appl Environ Microbiol 71:1745–1753CrossRefGoogle Scholar
  35. Mandal V, Sen SK, Mandal NC (2008) Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization. Ind J Biochem Biophys 45:106–110Google Scholar
  36. Manson JE, Tosteson H, Ridker PM et al (1992) The primary prevention of myocardial infarction. New Eng J Med 326:1406–1416Google Scholar
  37. Mastro TD, Spika JS, Lozano P et al (1990) Vancomycin-resistant Pediococcus acidilactici: nine cases of bacteremia. J Infect Dis 161:956–960Google Scholar
  38. Oksanen PJ, Salminen S, Saxelin M et al (1990) Prevention of travellers’ diarrhea by Lactobacillus GG. Ann Med 22:53–56CrossRefGoogle Scholar
  39. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Ant Van Leeuwenhoek 82:279–289CrossRefGoogle Scholar
  40. Pereira DI, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37:259–281CrossRefGoogle Scholar
  41. Ray B, Miller KW (2000) Natural Food Antimicrobial Systems. Naidu AS (ed). CRC Press Inc, Boca RatonGoogle Scholar
  42. Ray B, Schamber R, Miller KW (1999) The pediocin AcH precursor is biologically active. Appl Environ Microbiol 65:2281–2286Google Scholar
  43. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259CrossRefGoogle Scholar
  44. Rudel LL, Morris MD (1973) Determination of cholesterol using o-phthalaldehyde. J Lipid Res 14:364–366Google Scholar
  45. Sarem-Damerdji L, Sarem F, Marchel L et al (1995) In vitro colonization ability of human colon mucosa by exogenous Lactobacillus strains. FEMS Microbiol Lett 131:133–137CrossRefGoogle Scholar
  46. Schved F, Lalazar A, Henis Y et al (1993) Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 74:67–77Google Scholar
  47. Siitonen S, Vapaatalo H, Salminen S et al (1990) Effect of Lactobacillus GG yogurt in prevention of antibiotic-associated diarrhea. Ann Med 22:57–59CrossRefGoogle Scholar
  48. Sire JM, Donnio PY, Mensard R et al (1992) Septicemia and hepatic abscess caused by Pediococcus acidilactici. Eur J Clin Microbiol Infect 11:623–625CrossRefGoogle Scholar
  49. Tuohy KM, Probert HM, Smejkal CW et al (2003) Using probiotics and prebiotics to improve gut health. Drug Discov Today 8:692–700CrossRefGoogle Scholar
  50. Voet D, Voet J, Pratt CW (2002) Fundamentals of biochemistry. Wiley, Hoboken, p 264Google Scholar
  51. Walker DR, Gilliland SE (1993) Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76:956–961CrossRefGoogle Scholar
  52. Zhang M, Xiaomin H, Xiaobing F et al (2008) Characterization and selection of Lactobacillus strains for their effect on bile tolerance, taurocholate deconjugation and cholesterol removal. World J Microbial Biotechnol 24:7–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vivekananda Mandal
    • 1
    Email author
  • Sukanta Kumar Sen
    • 2
  • Narayan Chandra Mandal
    • 2
  1. 1.Department of BotanyDarjeeling Government CollegeDarjeelingIndia
  2. 2.Microbiology Division, Department of BotanyVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations