Skip to main content
Log in

Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2 = 0.998), 43.86 (r 2 = 0.995), and 33.16 (r 2 = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C i :

Initial metal concentration (mg/l)

C e :

Equilibrium concentration (mg/l)

q e :

Specific metal biosorption

q max :

Maximum adsorption capacity of the metal ion (mg/g)

b :

Ratio of adsorption rate constant to desorption rate constant (l/mg)

V :

Volume of metal solution (l)

M :

Mass of sorbent (g)

K f :

Sorptive capacity

n :

Sorptive intensity

FTIR:

Fourier Transform Infrared Spectroscopy

R 2 :

Regression coefficient

SE:

Standard error

References

  • Acosta MP, Valdman E, Leite SGF, Battaglini F, Ruzal SM (2005) Biosorption of copper by Paenibacillus polymyxa cells and their exoploysaccharide. World J Microbiol Biotechnol 21:1157–1163. doi:10.1007/s11274-005-0381-6

    Article  Google Scholar 

  • Chen C, Wang J (2007) Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 74:911–917. doi:10.1007/s00253-006-0739-1

    Article  CAS  Google Scholar 

  • Cho JS, Hur JS, Kang BH, Kim PJ, Sohn BK, Lee HJ, Jung YK, Heo JS (2001) Biosorption of copper by immobilized biomass of Pseudomonas stutzer. J Microbiol Biotechnol 11:964–972

    CAS  Google Scholar 

  • Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17:462–465. doi:10.1016/S0167-7799(99)01381-5

    Article  CAS  Google Scholar 

  • Fowle DA, Fein JB (1999) Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model. Geochim Cosmochim Acta 63:3059–3067. doi:10.1016/S0016-7037(99)00233-1

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation 62:195–203. doi:10.1016/j.ibiod.2008.01.008

    Article  CAS  Google Scholar 

  • Horsfall JM, Spiff AI (2005) Effect of metal ion concentration on the biosorption of Pb2+ and Cd2+ by Caladium bicolor (wild cocoyam). Afr J Biotechnol 4:191–196

    CAS  Google Scholar 

  • Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232. doi:10.1016/j.envint.2004.09.020

    Article  CAS  Google Scholar 

  • Komy ZR, Gabar RM, Shoriet AAM, Mohammed RM (2006) Characterization of acidic sites of Pseudomonas biomass capable of binding protons and cadmium and removal of cadmium via biosorption. World J Microbiol Biotechnol 22:975–982. doi:10.1007/s11274-006-9143-3

    Article  CAS  Google Scholar 

  • Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142:264–273. doi:10.1016/j.envpol.2005.10.001

    Article  CAS  Google Scholar 

  • Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86. doi:10.1016/j.jhazmat.2005.10.036

    Article  CAS  Google Scholar 

  • Norton L, Baskaran K, McKenzie T (2004) Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res 8:629–635. doi:10.1016/S1093-0191(03)00035-2

    Article  CAS  Google Scholar 

  • Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY (2007) Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J Hazard Mater 147:91–96. doi:10.1016/j.jhazmat.2006.12.046

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP (1999) Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int Biodeterior Biodegradation 44:101–110. doi:10.1016/S0964-8305(99)00064-5

    Article  CAS  Google Scholar 

  • Singleton P, Sainsbury D (1987) Dictionary of microbiology and molecular biology. Wiley, New York, p 721

    Google Scholar 

  • Smith JL, Collins HP (2007) Management of organisms and their processes in soils. In: Eldor AP (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Burlington, pp 389–430

    Google Scholar 

  • Tunali S, Çabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211. doi:10.1016/j.cej.2005.09.023

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–44

    Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–919. doi:10.1016/S0032-9592(03)00200-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant from the Research Institute of Agricultural Science, Kangwon National University, and 2006 grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.E., Hassan, S.H.A. & Joo, J.H. Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri . World J Microbiol Biotechnol 25, 1771–1778 (2009). https://doi.org/10.1007/s11274-009-0075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0075-6

Keywords

Navigation