World Journal of Microbiology and Biotechnology

, Volume 25, Issue 9, pp 1615–1623 | Cite as

Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1

  • Oluwafemi S. ObayoriEmail author
  • Matthew O. Ilori
  • Sunday A. Adebusoye
  • Ganiyu O. Oyetibo
  • Ayodele E. Omotayo
  • Olukayode O. Amund
Original Paper


Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.


Biodegradation Biosurfactants Engine oil Hydrocarbons Pseudomonas 


  1. Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159. doi: 10.1007/s11274-007-9345-3 CrossRefGoogle Scholar
  2. Amund OO, Adebiyi AG (1991) Effect of viscosity on the biodegradability of automotive lubricating oils. Tribol Intern 24:235–237. doi: 10.1016/0301-679X(91)90049-F CrossRefGoogle Scholar
  3. Atlas RM (1992) Petroleum microbiology. In: Lederberg J (ed) Encyclopedia of microbiology. Academic Press, Baltimore, pp 363–369Google Scholar
  4. Bauchop T, Elsden SR (1960) The growth of microorganisms in relation to their energy. J Gen Microbiol 23:457–459Google Scholar
  5. Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552Google Scholar
  6. Desai JD, Banat IM (1997) Microbial production of biosurfactants and their commercial potentials. Microbiol Mol Biol Rev 61:47–64Google Scholar
  7. Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912Google Scholar
  8. Foght JM, Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by Pseudomonas species. Can J Microbiol 34:1135–1141CrossRefGoogle Scholar
  9. Gurjar M, Khire JM, Khan MI (1995) Bioemulsifier by Bacillus stearothermophillus VR—8 isolate. Lett Appl Microbiol 21:83–86. doi: 10.1111/j.1472-765X.1995.tb01012.x CrossRefGoogle Scholar
  10. Ilori MO (1998) Microbial degradation of hydrocarbons in soil polluted with crude oil. Ph.d Thesis. University of Lagos, Lagos, NigeriaGoogle Scholar
  11. Ilori MON, Amund D-I (2001) Production of a peptidoglycolipid bioemulsifier by Pseudomonas aeruginosa grown on hydrocarbon. Z Naturforsch 56c:547–552Google Scholar
  12. Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas sp., isolated from a tropical environment. Chemosphere 61:985–992. doi: 10.1016/j.chemosphere.2005.03.066 CrossRefGoogle Scholar
  13. Ilori MO, Adebusoye SA, Ojo AC (2008) Isolation and characterisation of hydrocarbon-degrading and biosurfactant-producing yeast strains obtained from a lagoon water. World J Microbiol Biotechnol 24:2539–2545. doi: 10.1007/s11274-008-9778-3 CrossRefGoogle Scholar
  14. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84. doi: 10.1016/j.envpol.2004.04.015 CrossRefGoogle Scholar
  15. Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterisation of the soil microflora from hydrocarbon-contaminated soil sites able to mineralise polycylic aromatic hydrocarbons. Appl Microbiol Biotechnol 41:267–273. doi: 10.1007/BF00186971 CrossRefGoogle Scholar
  16. Ko SH, Lebeault JM (1999) Effect of a mixed culture on co-oxidation during the degradation of saturated hydrocarbon mixture. J Appl Microbiol 87:72–79. doi: 10.1046/j.1365-2672.1999.00797.x CrossRefGoogle Scholar
  17. Kucerova R (2006) Application of Pseudomonas putida and Rhodococcus sp. By biodegradation of PAHs, PCB(s) and NEL soil samples from the hazardous waste dump in Pozdatky, Czech Republic. Rud Geol Naf Zb 18:97–101Google Scholar
  18. Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362Google Scholar
  19. Mandri T, Lin J (2007) Isolation and chatracterisation of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6:23–26Google Scholar
  20. Marin MA, Pedrogosa A, Laborda F (1996a) Emulsifier production and microscopical study of emulsions and biofilms from by the hydrocarbon utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667. doi: 10.1007/BF00172500 CrossRefGoogle Scholar
  21. Marin M, Pedregosa A, Rios S, Laborda F (1996b) Study of factors influencing the degradation of heating oil by Acinetobacter calcoaceticus MM5. Int Biodeterior Biodegradation 38:67–75. doi: 10.1016/S0964-8305(96)00027-3 CrossRefGoogle Scholar
  22. Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Amund OO (2008) Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J Microbiol Biotechnol 24:2639–2646. doi: 10.1007/s11274-008-9790-7 CrossRefGoogle Scholar
  23. Office of Technological Assesment (1990). Coping with an oiled sea, US, Congress, OTA-BP-O-63, US Government Printing Office, Washington DCGoogle Scholar
  24. Okoh AI (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50Google Scholar
  25. Okoh AI, Trejo-Hernandez MR (2006) Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. Afr J Biotechnol 5(25):2520–2525Google Scholar
  26. Okonkwo PO (1984) Toxicological effects of petroleum products pollution: a summary of some observations in Nigeria. In: The Proceedings of International Seminar on Petroleum Industry and the Nigeria Environment, Nigerian National Petroleum Corporation (NNPC), Lagos. pp. 258–259Google Scholar
  27. Oluwole OS, Makinde SCO, Philips DA (2005) The impact of spent engine oil pollution on the growth of Celosia argentea. Proceedings of the Faculty of Science Conference, Lagos State University (LASU), Ojo, Lagos. September 11–14, 2005. Pp. 68–70Google Scholar
  28. Rashedi H, Assadi MM, Jamshidi E, Bonakdapour B (2006) Production of rhamnolipid by Pseudomonas aeruginosa growing on carbon sources. Intern J Environ Sci Tech (Paris) 3:297–303Google Scholar
  29. Rhodes AN, Hendricks CW (1990) A continuous-flow method for measuring effects of chemicals on soil nitrification. Toxic Assess 5:77–78. doi: 10.1002/tox.2540050107 CrossRefGoogle Scholar
  30. Rodrigues L, Moldes A, Teixeira J, Oliveira R (2006) Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochem Eng J 28:109–116. doi: 10.1016/j.bej.2005.06.001 CrossRefGoogle Scholar
  31. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifier. Curr Opin Biotechnol 8:313–316. doi: 10.1016/S0958-1669(97)80009-2 CrossRefGoogle Scholar
  32. Sarubbo LA, Farias CBB, Campos-Takaki GM (2007) Co-utilisation of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54:68–73. doi: 10.1007/s00284-006-0412-z CrossRefGoogle Scholar
  33. Singh C, Lin J (2008) Isolation and characterisation of disel oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 7(12):1917–1932Google Scholar
  34. Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J Environ Health Sci Eng 2:6–12Google Scholar
  35. Tuleva BJ, Inanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch 57c:356–360Google Scholar
  36. Wackett LP, Hershberger LCD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM Press, Washington, p 228Google Scholar
  37. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Oluwafemi S. Obayori
    • 1
    Email author
  • Matthew O. Ilori
    • 1
  • Sunday A. Adebusoye
    • 1
  • Ganiyu O. Oyetibo
    • 1
  • Ayodele E. Omotayo
    • 1
  • Olukayode O. Amund
    • 1
  1. 1.Faculty of Science, Department of Botany and MicrobiologyUniversity of LagosAkoka, LagosNigeria

Personalised recommendations