Skip to main content

Advertisement

Log in

Factors affecting rumen methanogens and methane mitigation strategies

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rumen is a highly diverse ecosystem comprising different microbial groups including methanogens that consume a considerable part of the ruminant’s nutrient energy in methane production. The consequences of methanogenesis in the rumen may result in the low productivity and possibly will have a negative impact on the sustainability of the ruminant’s production. Since enteric fermentation emission is one of the major sources of methane and is influenced by a number of environmental factors, diet being the most significant one, a number of in vitro and in vivo trials have been conducted with different feed supplements (halogenated methane analogues, bacteriocins, propionate enhancers, acetogens, fats etc.) for mitigating methane emissions directly or indirectly, yet extensive research is required before reaching a realistic solution. Keeping this in view, the present article aimed to cover comprehensively the different aspects of rumen methanogenesis such as the phylogeny of methanogens, their microbial ecology, factors affecting methane emission, mitigation strategies and need for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers SV, Konings WN, Driessen JM (2007) Solute transport. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 354–368

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Anderson RC, Carstens GE, Miller RK et al (2006) Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresour Technol 97:2421–2426

    CAS  Google Scholar 

  • Arglyle JL, Baldwin RL (1988) Modeling of rumen water kinetics and effects of rumen pH changes. J Dairy Sci 71:1178–1188

    Article  Google Scholar 

  • Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82:780–787

    CAS  Google Scholar 

  • Ashes JR, Gulati SK, Scott TW (1997) New approaches to changing milk composition: potential to alter the content and composition of milk fat through nutrition. J Dairy Sci 80:2204–2212

    CAS  Google Scholar 

  • Baker SK (1999) Rumen methanogens and inhibition of methanogenesis. Aust J Agric Res 50:1293–1298. doi:10.1071/AR99005

    CAS  Google Scholar 

  • Beauchemin KA, McGinn SM (2006) Methane emission from beef cattle: effects of fumaric acid, essential oil and canola oil. J Anim Sci 84:1489–1496

    CAS  Google Scholar 

  • Benchaar C, Pomer C, Chiquette J (2001) Evaluation of dietary strategies to reduce methane production in ruminants: a modeling approach. Can J Anim Sci 81:563–574

    Google Scholar 

  • Boadi D, Benchaar C, Chiquette J et al (2004) Mitigation strategies to reduce enteric methane emission from dairy cows: update review. Can J Anim Sci 84:319–335

    Google Scholar 

  • Boone DR, Whitman WB, Koga Y (2001) Order II. Methanobacteriacea. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer Verlag, New York, pp 246–247

    Google Scholar 

  • Brown JW, Daniels CJ, Reeve JN (1989) Gene structure, organization and expression in archaebacteria. Crit Rev Microbiol 16:287–338. doi:10.3109/10408418909105479

    CAS  Google Scholar 

  • Callaway TR, Carneiro De Melo AMS, Russell JB (1997) The effect of nisin and monensin on ruminal fermentation in vitro. Curr Microbiol 35:90–96. doi:10.1007/s002849900218

    CAS  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW et al (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595. doi:10.3168/jds.2006-644

    CAS  Google Scholar 

  • Carro MD, Lopez S, Valdes C et al (1999) Effect of D, L-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Anim Feed Sci Technol 79:279–288. doi:10.1016/S0377-8401(99)00034-6

    CAS  Google Scholar 

  • Casserly C, Erijman L (2003) Molecular monitoring of microbial diversity in an UASB reactor. Int Biodeter Biodegr 52:7–12. doi:10.1016/S0964-8305(02)00094-X

    CAS  Google Scholar 

  • Cheeke PR (2000) Actual and potential application of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J Anim Sci 77:1–10

    Google Scholar 

  • Chen M, Wolin MJ (1979) Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl Environ Microbiol 38:72–77

    CAS  Google Scholar 

  • Conrad R, Phelps TJ, Zeikes JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  Google Scholar 

  • Das A, Singh GP (1999) Effect of different proportions of berseem and wheat straw on in vitro dry matter digestibility and total gas production. Indian J Anim Nutr 16:60–64

    Google Scholar 

  • Demeyer DI, De Graeve K (1991) Differences in stoichiometry between rumen and hindgut fermentation. J Anim Physiol Anim Nutr (Berl) 22:50–61

    Google Scholar 

  • Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322. doi:10.1111/j.1574-6941.2007.00394.x

    CAS  Google Scholar 

  • Deppenmeier U, Muller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 45:123–152. doi:10.1007/400_2006_026

    CAS  Google Scholar 

  • Diana ZS, Pereira NA, Smidt H et al (2007) Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol Ecol 60:252–265. doi:10.1111/j.1574-6941.2007.00291.x

    Google Scholar 

  • Dijkstra J, Neal HD, St C, Beever DE et al (1992) Stimulation of nutrient digestion, absorption and outflow in the rumen: model description. J Nutr 122:2239–2256

    CAS  Google Scholar 

  • Dohme F, Machmuller A, Wasserfallen A et al (2000) Comparative efficiency in various fats rich medium chain fatty acid to suppress ruminal methanogenesis as measured with RUSITEC. Can J Agric Sci 80:473–482

    CAS  Google Scholar 

  • FAO (Food, Agriculture Organization) (2003) World agriculture: towards 2015/2030. An FAO perspective. FAO, Rome, p 97

    Google Scholar 

  • Ferry JG (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman and Hall, New York

    Google Scholar 

  • Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 288–314

    Google Scholar 

  • Finlay BJ, Esteban G, Clarke KJ et al (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–162. doi:10.1111/j.1574-6968.1994.tb06758.x

    CAS  Google Scholar 

  • Fonty G, Joblin K, Chavarot M et al (2007a) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403. doi:10.1128/AEM.00181-07

    CAS  Google Scholar 

  • Fonty G, Joblin K, Chavarot M et al (2007b) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403. doi:10.1128/AEM.00181-07

    CAS  Google Scholar 

  • Friggens NC, Oldham JD, Dewhurst RJ et al (1998) Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J Dairy Sci 8:1331–1334

    Article  Google Scholar 

  • Galand PF, Saarnio S, Fritze H et al (2002) Depth related diversity of methanogen archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449. doi:10.1111/j.1574-6941.2002.tb01033.x

    CAS  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308. doi:10.1111/j.1574-6968.1990.tb04928.x

    Google Scholar 

  • Garcia JL, Ollivier B, Whitman WB (2006) The order Methanomicrobiales. In: Dworkin M et al (eds) The prokaryotes. Springer Verlag, New York, pp 208–230

    Google Scholar 

  • Garcia-Lopez PM, Kung L Jr, Odom JMI (1996) In vitro inhibition of microbial methane production by 9, 10- anthraquinone. J Anim Sci 74:2276–2284

    CAS  Google Scholar 

  • Goel G, Makkar HPS, Becker K (2008) Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J Appl Microbiol 105:770–777. doi:10.1111/j.1365-2672.2008.03818.x

    CAS  Google Scholar 

  • Goel G, Makkar HPS, Becker K (2009) Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. Br J Nutr 25:1–9. doi:10.1017/S0007114508076198

    Google Scholar 

  • Guan H, Wittenberg KM, Ominski KH et al (2006) Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim Sci 84:1896–1906. doi:10.2527/jas.2005-652

    CAS  Google Scholar 

  • Guo YQ, Hu WL, Liu JX (2005) Methanogens and manipulation of methane production in the rumen. Wei Sheng Wu Xue Bao 45:145–148

    CAS  Google Scholar 

  • Guo YQ, Liu JX, Lu Y et al (2008) Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol 47:421–426. doi:10.1111/j.1472-765X.2008.02459.x

    CAS  Google Scholar 

  • Harms U, Weiss DS, Gartner P et al (1995) The energy conserving N5–methyltetrahydromethanopterin: coenzyme M methyltransferase complex from methanobacterium thermoautotrophicum is composed of 8 different subunits. Eur J Biochem 228:640–648. doi:10.1111/j.1432-1033.1995.0640m.x

    CAS  Google Scholar 

  • Hegarty RS, Bird SH, Vanselow BA et al (2008) Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr 100:1220–1227. doi:10.1017/S0007114508981435

    CAS  Google Scholar 

  • Hess HD, Kreuzer M, Diaz TE et al (2003) Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim Feed Sci Technol 109:79–94. doi:10.1016/S0377-8401(03)00212-8

    CAS  Google Scholar 

  • Heyer J, Valery FG, Dunfield PF (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846

    CAS  Google Scholar 

  • Hino T, Takeshi K, Kanda M et al (1993) Effects of aibellin, a novel peptide antibiotic on rumen fermentation in vitro. J Dairy Sci 76:2213–2221

    Article  CAS  Google Scholar 

  • Hook SE, Northwood KS, Wright AD et al (2009) Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 75:374–380. doi:10.1128/AEM.01672-08

    CAS  Google Scholar 

  • Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50:203–212. doi:10.2323/jgam.50.203

    CAS  Google Scholar 

  • Isobe Y, Shibata F (1993) Rumen fermentation in goat administered fumaric acid. Anim Sci Technol 64:1024–1030

    CAS  Google Scholar 

  • Itabashi H, Barayu E, Kanda S et al (2000) Effect of salinomycin and fumaric acid on rumen fermentation and methane production in cattle. Asian Aust J Anim Sci 13:287

    Google Scholar 

  • Janssen PJ, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625. doi:10.1128/AEM.02812-07

    CAS  Google Scholar 

  • Jarvis GN, Strompl C, Burgess DM et al (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332. doi:10.1007/s002849910065

    CAS  Google Scholar 

  • Joblin KN (1999) Ruminal acetogens and their potential to lower ruminant methane emission. Aust J Agric Res 50:1307–1313. doi:10.1071/AR99004

    Google Scholar 

  • Joblin KN (2005) Methanogenic archaea. In: Makkar HPS, McSweeney C (eds) Methods in gut microbial ecology for ruminants. Springer, Dordrecht, pp 47–53

    Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Johnson DE, Hill TM, Carmean BR (1991) New perspectives on ruminant methane emissions. In: Wenk C, Boessinger WCM et al (eds) Energy metabolism of farm animal. Zurich ETH, Switzerland, pp 376–379

    Google Scholar 

  • Jones WJ (1991) Diversity and physiology of methanogens. In: Roger JE, Whiteman WB (eds) Microbial production and emission of greenhouse gases: methane, nitrous oxide and halomethane. Academic Press Inc., New York, pp 39–54

    Google Scholar 

  • Jordan E, Kenny D, Hawkins M et al (2006) Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J Anim Sci 84:2418–2425. doi:10.2527/jas.2005-354

    CAS  Google Scholar 

  • Kalmakoff ML, Barlett F, Teather RM (1996) Are ruminal bacteria armed with bacteriocin? J Dairy Sci 79:2297–2306

    Article  Google Scholar 

  • Kendall M, Boone D (2006) The order Methanosarcinales. In: Dworkin M et al (eds) The prokaryotes. Springer Verlag, New York, pp 244–256

    Google Scholar 

  • Klein A, Allsmanberger R, Bokranz M et al (1988) Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol Gen Genet 213:409–420. doi:10.1007/BF00339610

    CAS  Google Scholar 

  • Klieve AV, Hegarty RS (1999) Opportunities for biological control of methanogenesis. Aust J Agric Res 50:1315–1319. doi:10.1071/AR99006

    Google Scholar 

  • Kung L Jr, Hession AO, Bracht JP (1998) Inhibition of sulfate reduction to sulfide by 9, 10- anthraquinone in in vitro ruminal fermentations. J Dairy Sci 81:2251–2256

    CAS  Google Scholar 

  • Lal M, Khan MY, Kishan J et al (1987) Comparative nutrient utilization by Holstein Fresian crossbred cattle and buffaloes fed on wheat straw based ration. J Anim Nutr 4:177–180

    Google Scholar 

  • Lange M, Westermann P, Ahring BK (2005) Archaea in protozoa and metazoan. Appl Microbiol Biotechnol 66:465–474. doi:10.1007/s00253-004-1790-4

    CAS  Google Scholar 

  • Lanigan GW, Payne AL, Peterson JE (1978) Anti-methanogenic drugs and Heliotropium europaeum poisoning in penned sheep. Aust J Agric Res 29:1281–1291. doi:10.1071/AR9781281

    CAS  Google Scholar 

  • Lee SS, Hsu JT, Mantovani HC et al (2002) The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett 217:51–55

    CAS  Google Scholar 

  • Lila ZA, Mohammed N, Tatsuoka N et al (2004) Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. Anim Sci J 75:15–22. doi:10.1111/j.1740-0929.2004.00149.x

    CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals New York Acad Sci 1125:171–189

    CAS  Google Scholar 

  • Lopez S, McIntosh FM, Wallace RJ et al (1999a) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim Feed Sci Technol 78:1–9. doi:10.1016/S0377-8401(98)00273-9

    CAS  Google Scholar 

  • Lopez S, Valdes C, Newbold CJ et al (1999b) Influence of sodium fumarate on rumen fermentation in vitro. Br J Nutr 81:59–64

    CAS  Google Scholar 

  • Lovley DK, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organisms that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48:81–87

    CAS  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol 148:3521–3530

    CAS  Google Scholar 

  • Machmuller A, Kreuzer M (1999) Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can J Anim Sci 79:65–72

    Article  CAS  Google Scholar 

  • Mantovani HC, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67:808–813. doi:10.1128/AEM.67.2.808-813.2001

    CAS  Google Scholar 

  • Martin SA (1998) Manipulation of ruminal fermentation with organic acids: a review. J Anim Sci 76:3123–3132

    CAS  Google Scholar 

  • Martin SA, Macey JM (1985) Effects of monensin, pyromellitic diimide and 2- bromoethanesulfonic acid on rumen fermentation in vitro. J Anim Sci 60:544–550

    CAS  Google Scholar 

  • Martin SA, Streeter MN (1995) Effect of malate on in vitro mixed ruminal microorganism fermentation. J Anim Sci 73:2141–2145

    CAS  Google Scholar 

  • Mastepanov M, Sigsgaard C, Dlugokencky EJ et al (2008) Large tundra methane burst during onset of freezing. Nat Lett 456:628–631. doi:10.1038/nature07464

    CAS  Google Scholar 

  • Mathers JC, Miller EL (1982) Some effects of chloral hydrate on rumen fermentation and digestion in sheep. J Agric Sci 99:215–224. doi:10.1017/S0021859600055234

    CAS  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13. doi:10.1071/EA07218

    CAS  Google Scholar 

  • McCrabb GJ, Berger KT, Magner T et al (1997) Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust J Agric Res 48:323–329. doi:10.1071/A96119

    CAS  Google Scholar 

  • McGinn SM, Beauchemin KA, Coates T et al (2004) Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast and fumaric acid. J Anim Sci 82:3346–3356

    CAS  Google Scholar 

  • Miller TL, Wolin MJ (2001) Inhibition of growth of methane-producing bacteria of the ruminant fore-stomach by hydroxymethylglutaryl SCoA reductase inhibitors. J Dairy Sci 84:1445–1448

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ, Hongxue Z et al (1986) Characteristic of methanogens isolated from bovine rumen. Appl Environ Microbiol 51:201–202

    CAS  Google Scholar 

  • Mohini M, Singh GP (2001) Methane production on feeding jowar fodder based ration in buffalo calves. Indian J Anim Nutr 18:204–209

    Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootechnol 49:231–253. doi:10.1051/animres:2000119

    CAS  Google Scholar 

  • Murphy MR, Baldwin RL, Koong LJ (1982) Estimation of stoichiometric parameters of rumen fermentation of roughage and concentrate diets. J Anim Sci 55:411–421

    CAS  Google Scholar 

  • Nercessian D, Upton M, Loyd D et al (1999) Phylogenetic analysis of peat bog methanogens populations. FEMS Microbiol Lett 173:425–429. doi:10.1111/j.1574-6968.1999.tb13534.x

    CAS  Google Scholar 

  • Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 21:230–234. doi:10.1111/j.1472-765X.1995.tb01048.x

    CAS  Google Scholar 

  • Nolling J, Elfner A, Palmer JR et al (1996) Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46:1170–1173

    Article  CAS  Google Scholar 

  • Odongo NE, Or-Rashid MM, Kebreab E et al (2007) Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J Dairy Sci 90:1851–1858. doi:10.3168/jds.2006-541

    CAS  Google Scholar 

  • Ohene-Adjei S, Teather RM, Ivan M et al (2007) Post-inoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol 73:4609–4618. doi:10.1128/AEM.02687-06

    CAS  Google Scholar 

  • Ohene-Adjei S, Chaves AV, McAllister TA et al (2008) Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb Ecol 56:234–242. doi:10.1007/s00248-007-9340-0

    CAS  Google Scholar 

  • Ranilla MJ, Jouany JP, Morgavi DP (2007) Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol 45:675–680. doi:10.1111/j.1472-765X.2007.02251.x

    CAS  Google Scholar 

  • Raskin L, Poulsen LK, Noguera DR et al (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248

    CAS  Google Scholar 

  • Rea S, Bowman JP, Popovski S et al (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456. doi:10.1099/ijs.0.63984-0

    CAS  Google Scholar 

  • Reeve JN (1992) Molecular biology of methanogens. Annu Rev Microbiol 46:165–191. doi:10.1146/annurev.mi.46.100192.001121

    CAS  Google Scholar 

  • Regensbogenova M, McEwan NR, Javorsky P et al (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313. doi:10.1111/j.1574-6968.2004.tb09771.x

    CAS  Google Scholar 

  • Rogers M, Jouany JP, Thivend P et al (1997) The effects of short term and long term monensin supplementation and its subsequent withdrawal on digestion in sheep. Anim Feed Sci Technol 65:113–127. doi:10.1016/S0377-8401(96)01089-9

    CAS  Google Scholar 

  • Rospert S, Linder D, Ellermann J et al (1990) Two genetically distinct methyl coenzyme M reductases in Methanobacterium thermoautotrophicum strains Marburg and ΔH. Eur J Biochem 194:871–877. doi:10.1111/j.1432-1033.1990.tb19481.x

    CAS  Google Scholar 

  • Russell JB, Mantovani HC (2002) The bacteriocin of ruminal bacteria and their potential as an alternative to antibiotics. J Mol Microbiol Biotechnol 4:347–355

    CAS  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Sci 292:1119–1122. doi:10.1126/science.1058830

    CAS  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y et al (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331. doi:10.1128/AEM.03008-06

    CAS  Google Scholar 

  • Sar C, Mwenya B, Santaso B et al (2005) Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J Anim Sci 83:644–652

    CAS  Google Scholar 

  • Sawyer MS, Hoover WH, Sniffen CJ (1974) Effects of ruminal methane inhibitor on growth and energy metabolism in the ovine. J Anim Sci 38:908–914

    CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Syutsubo K et al (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16s rRNA gene analysis. Microbiol 144:2655–2665

    Article  CAS  Google Scholar 

  • Sharp R, Zeimer CJ, Stern MD et al (1998) Taxon-specific association between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Lett 26:71–78

    CAS  Google Scholar 

  • Sheppard SK, McCarthy AJ, Loughnane JP et al (2005) The impact of sludge amendment on methanogen community structure in an upland soil. Appl Soil Ecol 28:147–162. doi:10.1016/j.apsoil.2004.07.004

    Google Scholar 

  • Singh GP, Mohini M (1999) Effect of different levels on berseem on in vitro digestibility and methane production in crossbred cattle fed wheat straw based diets. Indian J Dairy Biosci 10:14–19

    Google Scholar 

  • Singh K, Singh GP (1997) Effect of concentrate levels in diet of cattle on rumen microorganisms. Indian J Anim Sci 64:349–350

    Google Scholar 

  • Srivastava AK, Garg MR (2002) Use of sulphur hexafluoride tracer technique for measurement of methane emission from ruminants. Indian J Dairy Sci 55:36–39

    CAS  Google Scholar 

  • Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, New York, pp 21–75

    Google Scholar 

  • Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie Academic and Professional, London, pp 10–72

    Google Scholar 

  • Stock PK, McCleskey CS (1964) Morphology and physiology of Methanomonas methanooxidans. J Bacteriol 88:1071–1077

    Google Scholar 

  • Sundset MA, Edwards JE, Cheng YF et al (2008) Molecular diversity of the rumen microbiome of Norwegian Reindeer on natural summer pasture. Microbial Ecol 8:S0095–S3628

    Google Scholar 

  • Teather RM, Froster RJ (1998) Manipulating the rumen microflora with bacteriocin to improve ruminant production. Can J Anim Sci 78:57–69

    Article  CAS  Google Scholar 

  • Tezel U, Pierson JA, Pavlostathis SG (2006) Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Res 40:3660–3668. doi:10.1016/j.watres.2006.06.019

    CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. doi:10.1038/nrmicro1931

    CAS  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    CAS  Google Scholar 

  • Tokura M, Chagan I, Ushida K et al (1999) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39:123–128. doi:10.1007/s002849900432

    CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Boone DR et al (2004) Effects of several inhibitors on pure cultures of ruminal methanogens. J Appl Microbiol 97:520–526. doi:10.1111/j.1365-2672.2004.02330.x

    CAS  Google Scholar 

  • Ungerfeld EM, Kohn RA, Wallace RJ et al (2007) A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J Anim Sci 85:2556–2563. doi:10.2527/jas.2006-674

    CAS  Google Scholar 

  • US-EPA (United State—Environmental Protection Agency) (2006) Global anthropogenic non-CO2 greenhouse gas emission: 1990-2020. 430-R-06-003, Washington, D.C., <http://www.epa.gov/nonco2/econ-inv/downloads/GlobalAnthro EmissionsReport.pdf>

  • Ushida K, Tokura M, Takenaka A (1997) Ciliate protozoa and ruminal methanogenesis. In: Onodera R, Itabashi H, Ushida K, Yano H, Sasaki Y et al (eds) Rumen microbes and digestive physiology in ruminants. Japan Scientific Society Press, Tokyo, pp 209–220

    Google Scholar 

  • Valdes C, Newbold CJ, Hillman K et al (1996) Evidence for methane oxidation in rumen fluid in vitro. Ann Zootechnol 45:351. doi:10.1051/animres:19960680

    Google Scholar 

  • Van Nevel CJ, Demeyer DI (1992) Influence of antibiotics and a deaminase inhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes in vitro. Anim Feed Sci Technol 37:21–31. doi:10.1016/0377-8401(92)90117-O

    Google Scholar 

  • Van Nevel CJ, Demeyer DI (1995) Feed additives and other interventions for decreasing methane emissions. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feeding. VCH, Weinheim, pp 329–349

    Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    CAS  Google Scholar 

  • Wakita M, Masuda T, Hoshino S (1986) Effect of salinomycin on the gas production by sheep rumen contents in vitro. J Anim Physiol Anim Nutr (Berl) 56:243–251

    Article  CAS  Google Scholar 

  • Whitelaw FG, Eadie JM, Bruce LA et al (1984) Methane formation in faunated and ciliate free cattle and its relationship with rumen volatile fatty acid proportions. Br J Nutr 52:261–275. doi:10.1079/BJN19840094

    CAS  Google Scholar 

  • Whitford MF, Teather RM, Forster R (2001) Phylogenetic analysis of methanogens from bovine rumens. BMC Microbiol 1:5–9. doi:10.1186/1471-2180-1-5

    CAS  Google Scholar 

  • Whitman WB, Boone DR, Koga Y et al (2001) Taxonomy of methanogenic Archaea. In: Boone DR, Castenholz RW et al (eds) Bergey’s manual of systematic bacteriology, Springer Verlag, New York, pp 211–213.

    Google Scholar 

  • Whitman WB, Bowen T, Boone D (2006) The Methanogenic bacteria. In: Dworkin M et al (eds) The prokaryotes. Springer Verlag, New York, pp 165–207

    Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer-Verlag, London, pp 139–144

    Google Scholar 

  • Wolfe RS (1982) Biochemistry of methanogenesis. Experientia 38:198–200. doi:10.1007/BF01945074

    CAS  Google Scholar 

  • Wolin MJ, Miller TL (1988) Microbe-microbe interactions. In: Hobson PN (ed) The rumen microbial ecosystems. Elsevier Scientific Publishers, London, pp 343–459

    Google Scholar 

  • Wolin MJ, Miller TL, Stewart CS (1997) Microbe-microbe interactions. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie Academic and Professional, New York, pp 467–491

    Google Scholar 

  • Wright ADG, Williams AJ, Winder B et al (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270. doi:10.1128/AEM.70.3.1263-1270.2004

    CAS  Google Scholar 

  • Wright ADG, Toovey AF, Pimm CL (2006) Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe 12:134–139. doi:10.1016/j.anaerobe.2006.02.002

    CAS  Google Scholar 

  • Yu Z, Garcia-Gonzalez R, Schanbacher FL et al (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893. doi:10.1128/AEM.00684-07

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Puniya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Puniya, A.K., Puniya, M. et al. Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25, 1557–1566 (2009). https://doi.org/10.1007/s11274-009-0041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0041-3

Keywords

Navigation