Skip to main content

Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere


Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Boivin R, Chalifour FP, Dion P (1988) Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas Agrobacterium and Rhizobium. Mol Gen Genet 21(3):50–55

    Article  Google Scholar 

  2. Buell CR, Anderson AJ (1992) Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida a beneficial fluorescent pseudomonad. Mol Plant Microbe Interact 5:154–162

    CAS  Google Scholar 

  3. Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    CAS  Google Scholar 

  4. de Weger LA, Bloemberg GV, van Wezel T, van Raamsdonk M, Glandorf DC, van Vuurde J, Jann K, Lugtenberg BJ (1996) A novel cell surface polysaccharide in Pseudomonas putida WCS358 which shares characteristics with Escherichia coli K antigens is not involved in root colonization. J Bacteriol 178:1955–1961

    Google Scholar 

  5. Fisk CH, Sabbarow Y (1925) A colorimetric determination of phosphate. J Biol Chem 66:375–400

    Google Scholar 

  6. Gu Y-H, Mazzola M (2001) Impact of carbon starvation on stress resistance survival in soil habitats and biocontrol ability of Pseudomonas putida strain 2C8. Soil Biol Biochem 33:1155–1165. doi:10.1016/S0038-0717(01)00019-0

    Article  CAS  Google Scholar 

  7. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi:10.1046/j.1365-2672.2003.02161.x

    Article  CAS  Google Scholar 

  8. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi:10.1038/286885a0

    Article  CAS  Google Scholar 

  9. Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJ (2002) Pseudomonas putida strain PCL1444 selected for efficient root colonization and naphthalene degradation effectively utilizes root exudates components. Mol Plant Microbe Interact 15:734–741. doi:10.1094/MPMI.2002.15.7.734

    Article  CAS  Google Scholar 

  10. Morales H, Sanchis V, Usall J, Ramos AJ, Marín S (2008) Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67. doi:10.1016/j.ijfoodmicro.2007.11.056

    Article  Google Scholar 

  11. Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Morabbi Heravi K (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol. doi:10.1007/s11274-009-0037-z

    Google Scholar 

  12. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2

    Article  CAS  Google Scholar 

  13. Rodriguez-Herva JJ, Reniero D, Galli E, Ramos JL (1999) Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. Environ Microbiol 1:479–488. doi:10.1046/j.1462-2920.1999.00058.x

    Article  CAS  Google Scholar 

  14. Sandra AI, Wright I, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292. doi:10.1128/AEM.67.1.284-292.2001

    Article  Google Scholar 

  15. Somers E, Vanderleyden J (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240. doi:10.1080/10408410490468786

    Article  CAS  Google Scholar 

  16. Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L) Merr] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot (Lond) 77:453–460. doi:10.1006/anbo.1996.0055

    Article  Google Scholar 

Download references


This research was partially supported by a grant from National Research Council of I.R. Iran. We would like to thank Prof. Hani Antoun for his critical revision of this manuscript.

Author information



Corresponding author

Correspondence to Mohammad Ali Malboobi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malboobi, M.A., Behbahani, M., Madani, H. et al. Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25, 1479–1484 (2009).

Download citation


  • Phosphate solubilization
  • Pantoea agglomerans
  • Microbacterium laevaniformans and Pseudomonas putida
  • Biofertilizer
  • Potato