In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts

Abstract

The prebiotic effects of water extracts of two blueberry (BBE) cultivars (‘Centurion’ and ‘Maru’) were studied using pure and mixed cultures of human faecal bacteria. The results demonstrated for the first time that addition of BBE from both cultivars to broth media containing pure cultures of Lactobacillus rhamnosus and Bifidobacterium breve resulted in a significant increase (P < 0.05–0.0001) in the population size of these strains. Batch fermentation system was used to monitor the effect of BBE addition on the mixed faecal bacterial populations (obtained from healthy human donors). Addition of BBE from both cultivars to batch cultures inoculated with mixed human faecal cultures resulted in a significant increase in the number of lactobacilli (P < 0.01–0.0001) and bifidobacteria (P < 0.05–0.0001). Furthermore, a significant influence on the population size of lactobacilli and bifidobacteria was observed after administration of extracts from both cultivars to rats daily for 6 days in comparison with the control group. In rats gavaged orally with 4 ml kg−1 day−1 of BBE for 6 days, the population size of lactobacilli (P < 0.05) and bifidobacteria (P < 0.05–0.01) was increased significantly. We hypothesize that BBE could modify the bacterial profile by increasing the numbers of beneficial bacteria and thereby improving gut health.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image. J Biophoto Int 11:36–42

    Google Scholar 

  2. Alberto MR, Farias ME, Manca de Nadra MC (2001) Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J Agric Food Chem 49:4359–4363. doi:10.1021/jf0101915

    Article  CAS  Google Scholar 

  3. Apajalahti JH, Kettunen H, Holben WE, Nurminen PH, Rautonen N, Mutanen M (2002) Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum. Appl Environ Microbiol 68:4986–4995. doi:10.1128/AEM.68.10.4986-4995.2002

    Article  CAS  Google Scholar 

  4. Bouhnik Y, Flourie B, Agay-Abensor D et al (1997) Administration of transgalactooligosaccharides increases faecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 127:444–448

    CAS  Google Scholar 

  5. Burns AJ, Rowland IR (2000) Anti-carcinogenicity of probiotics and prebiotics. Curr Issues Intest Microbiol 1:13–24

    CAS  Google Scholar 

  6. Candela M, Seibold G, Vitali B et al (2005) Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol 156:887–895. doi:10.1016/j.resmic.2005.04.006

    Article  CAS  Google Scholar 

  7. Cao G, Booth SL, Sadowski JA et al (1998) Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr 68:1081–1087

    CAS  Google Scholar 

  8. Dinoto A, Suksomcheep A, Ishizuka S et al (2006) Modulation of rat microbiota by administration of raffinose and encapsulated Bifidobacteriuym breve. Appl Environ Microbiol 72:784–792. doi:10.1128/AEM.72.1.784-792.2006

    Article  CAS  Google Scholar 

  9. Gibson GR, Beaty ER, Wang X et al (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982. doi:10.1016/0016-5085(95)90192-2

    Article  CAS  Google Scholar 

  10. Gopal P, Prasad J, Gill H (2003) Effects if the consumption of Bifidobacterium lactis HN019 (DR10™) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects. Nutr Res 23:1313–1328. doi:10.1016/S0271-5317(03)00134-9

    Article  CAS  Google Scholar 

  11. Grizard D, Barthomeuf C (1999) Non-digestible oligosaccharides used as peebiotic agents mode of production and beneficial effects on animal and human health. Reproduction 39:563–588

    CAS  Google Scholar 

  12. Guamer F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519. doi:10.1016/S0140-6736(03)12489-0

    Article  Google Scholar 

  13. Joseph JA, Denisova N, Fisher D et al (1998) Membrane and receptor modifications of oxidative stress vulnerability in aging. Nutritional considerations. Ann N Y Acad Sci 854:268–276. doi:10.1111/j.1749-6632.1998.tb09908.x

    Article  CAS  Google Scholar 

  14. Kahkonen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 49:4076–4082. doi:10.1021/jf010152t

    Article  CAS  Google Scholar 

  15. Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 66:2682–2684. doi:10.1128/AEM.66.6.2682-2684.2000

    Article  CAS  Google Scholar 

  16. Kraft TFB, Schmidt BM, Yousef GG et al (2005) Chemppreventive potential of wild, lowbush blueberry fruits in multiple stages of carcinogenesis. J Food Sci 70:S159–S166

    CAS  Google Scholar 

  17. Puupponen-Pimiä R, Nohynek L, Meie C et al (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507. doi:10.1046/j.1365-2672.2001.01271.x

    Article  Google Scholar 

  18. Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S et al (2005) Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 98:991–1000. doi:10.1111/j.1365-2672.2005.02547.x

    Article  Google Scholar 

  19. Rao AV (1999) Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. J Nutr 129:1442S–1445S

    CAS  Google Scholar 

  20. Reeves PG, Nielsen FH, Fahey GC (1993) AIN93 purified diets for laboratory rodents: final report to the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  21. Sanz ML, Polemis N, Morales V et al (2005) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921. doi:10.1021/jf0500684

    Article  CAS  Google Scholar 

  22. Schotsmans W, Molan AL, MacKay B (2007) Controlled atmosphere storage of rabbiteye blueberries enhances postharvest quality aspects. Postharvest Biol Technol 44:277–285. doi:10.1016/j.postharvbio.2006.12.009

    Article  CAS  Google Scholar 

  23. Sullivan A, Nord CE (2002) The place of probiotics in human intestinal infections. Int J Antimicrob Agents 20:313–319. doi:10.1016/S0924-8579(02)00199-1

    Article  CAS  Google Scholar 

  24. Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 76:265–278. doi:10.1023/A:1002038308506

    Article  CAS  Google Scholar 

  25. Wang Y, Chang CF, Chou J et al (2005) Dietary supplementation with blueberries, spinch, or spirulina reduces ischemic brain damage. Exp Neurol 193:75–84. doi:10.1016/j.expneurol.2004.12.014

    Article  CAS  Google Scholar 

  26. Yamamoto T, Juneja LR, Chu DC, Kim M (1997) Chemistry and applications of green tea. CRC press LLC, Boca Raton

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdul Lateef Molan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molan, A.L., Lila, M.A., Mawson, J. et al. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World J Microbiol Biotechnol 25, 1243–1249 (2009). https://doi.org/10.1007/s11274-009-0011-9

Download citation

Keywords

  • Blueberry extract
  • Prebiotic activity
  • Lactobacilli
  • Bifidobacteria