Skip to main content
Log in

Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological control of the cyst forming nematode Heterodera cajani was studied on sesame using plant growth promoting rhizobacteria (PGPR) Pseudomonas aeruginosa LPT3 and LPT5. Based on plant growth promoting attributes, two fluorescent pseudomonads, LPT3 and LPT5 were evaluated for their efficacy against cyst forming nematode Heterodera cajani that parasitize Sesamum indicum. Pseudomonas aeruginosa LPT5 produced IAA, HCN, chitinase, glucanase and siderophore, and also solubilized inorganic phosphate in vitro. Moreover, LPT5 resulted in mortality of second stage juveniles of H. cajani, which was 13% higher as compared to P. aeruginosa LPT3. Interestingly, when both strains were inoculated together for the management of H. cajani on Sesamum indicum the population of H. cajani was reduced significantly, in field trial. Approximately 60% reduction in cyst and juveniles population was recorded with LPT5 coated seeds, while LPT3 resulted in 49% reduction in cyst and juvenile population as compared to control. Plants grown with seeds bacterized with LPT5 and reduced doses of urea, diammonium phosphate (DAP), muriate of potash (K) and gypsum gave maximum increase in yield, in comparison to that of plants raised under the influence of recommended or full doses of the chemical fertilizers. Pseudomonas aeruginosa LPT5 also showed excellent root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Photo 1
Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ali NI, Imran A, Siddiqui S, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058. doi:10.1016/S0038-0717(02)00029-9

    Article  CAS  Google Scholar 

  • Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1,3-glucanase activity produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53:207–212. doi:10.1139/W06-119

    Article  CAS  Google Scholar 

  • Ayala EV, Rao SP (2002) Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Bano M, Musarrat J (2002) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 43:182–186

    Google Scholar 

  • Bhaita S, Dubey RC, Maheshwari DK (2003) Antagonistic effect of fluorescent pseudomonads against Macrophomina phaseolina that causes charcoal rot of groundnut. Indian J Exp Biol 41:1442–1446

    Google Scholar 

  • Cayrol DJ, Djian C, Pijarowski L (1989) Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol 12:331–336

    Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du mais et de la laitue romaine par der microorganismes dissolvent le phosphore inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling D, O’Gara F (1997) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    CAS  Google Scholar 

  • Deshwal VK, Kumar T, Dubey RC, Maheshwari DK (2006) Long term effect of Pseudomonas aeruginosa GRC1 on yield of subsequent crops of paddy after mustard seed bacterization. Curr Sci 91:423–424

    Google Scholar 

  • Duhoon SS, Jyoteishi A, Deshmukh MR, Singh NB (2004) Optimization of Sesamum indicum production through bio-natural inputs. 4th International crop science congress. The Regional Institute, Sydney

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 47:109–117

    Google Scholar 

  • Gomez AK, Gomez AA (1984) Statistical procedure for agricultural research. Wiley, New York

    Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001) Effect of metal ions on the growth of Pseudomonas aeruginosa and siderophore and protein production. Indian J Exp Biol 39:1318–1321

    CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement, suppression of Macrophomina phaseolina causing charcoal rot of pea nut by fluorescent Pseudomonas. Biol Fertil Soils 35:295–301

    Google Scholar 

  • Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol 51:821–835. doi:10.1007/s10526-006-9000-1

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins Press, London

    Google Scholar 

  • Honglin T, Shouna W, Xiuying W (1995) Screening of rhizobacteria antagonistic to plant parasitic nematodes. Acta Agricultuae Universitalis Pekinensis 21:11–15

    Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK (2006) Effect of chemical fertilizer adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1 on Macrophomena phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25:228–235

    Google Scholar 

  • Kesavan PC, Swaminathan MS (2006) From green revolution to evergreen revolution: pathways and technology. Curr Sci 90:145–146

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by plant growth-promoting rhizobacteria. Nature 286:885–886. doi:10.1038/286885a0

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Mclnroy JA, Young RW (1992) Rhizospheric bacteria antagonistic to soybean cyst (Heterodera glycines) and root knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84. doi:10.1007/BF00012844

    Article  CAS  Google Scholar 

  • Kluepfel DA, McInnis TM, Zehr EI (1993) Involvement of root colonizing bacteria in Peach Orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathology 83:1240–1245. doi:10.1094/Phyto-83-1240

    Article  Google Scholar 

  • Kumar V, Behl RK, Nurula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93. doi:10.1078/0944-5013-00081

    Article  CAS  Google Scholar 

  • Kumar T, Kang SC, Maheshwari DK (2005) Nematicidal activity of some fluorescent pseudomonads on cyst forming nematode, Heterodera cajani and growth of Sesamum indicum var. RT1. Agric Chem Biotechnol 48:161–166

    Google Scholar 

  • Luc M (1986) Cyst nematodes in equatorial and hot tropical regions. In: Lamberti F, Taylor CE (eds) Cyst nematodes. Plenum Publishing Corporation, France

  • Miller RL, Higgins VJ (1970) Association of cyanide with infection of birds foot trefoil by Stemphylium loti. Phytopathology 60:104–110

    Article  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic bacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro interrelationship between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13:269–274

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus and soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Racke J, Sikora RA (1992) Isolation, formulation and antagonistic activity of rhizosphere bacteria toward the potato cyst nematode Globodera pallida. Soil Biol Biochem 24:531–536. doi:10.1016/0038-0717(92)90075-9

    Article  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532. doi:10.1111/j.1365-3059.1991.tb02415.x

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2000) Use of Pseudomonas aeruginosa for the control of root rot-root knot disease complex in tomato. Nematol Mediterr 28:189–192

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes. A review. Bioresour Technol 69:167–179. doi:10.1016/S0960-8524(98)00122-9

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441. doi:10.1007/s11274-006-9244-z

    Article  CAS  Google Scholar 

  • Spiegel Y, Chon E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov. for controlling the root knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125. doi:10.1080/09583159109355191

    Article  Google Scholar 

  • Subba Rao NS (1994) Integrated nutrient management for sustainable productivity of oilseeds in India. In: Prasad MVR (ed) Sustainability in oilseeds. Indian Society of Oilseeds Research Directorate of Oilseed Research, Hyderabad, pp 264–270

  • Thorne G (1961) Principles of nematology. Mc Graw Gill Book Co, New York, p 553

    Google Scholar 

  • Vives-Flórez M, Garnica D (2006) Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. Int Microbiol 9:247–252

    Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa—plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331. doi:10.1104/pp.103.027888

    Article  CAS  Google Scholar 

  • Weidenborner M, Kunz B (1993) Influence of fermentation conditions on nematicidal activity of Pseudomonas fluorescens. Z Pflanzenkr Pflanzenschutz 100:90

    Google Scholar 

  • Weiss EA (1971) Castor, sesame and safflower. Barnes and Noble, New York

    Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take all the wheat by seed treatment with fluorescent pseudomonads. Phytopathology 23:23–54

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  Google Scholar 

Download references

Acknowledgements

DKM wishes to thank TMOP & M, and CSIR, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maheshwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, T., Wahla, V., Pandey, P. et al. Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25, 277–285 (2009). https://doi.org/10.1007/s11274-008-9890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9890-4

Keywords