Skip to main content
Log in

Optimization and mechanism of diacetyl accumulation by Enterobacter aerogenes mutant UV-3

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A mutant designated as UV-3 was obtained from wild-type Enterobacter aerogenes 10293 through u.v. radiation. The activities of α-acetolactate decarboxylase (Ald), lactate dehydrogenase (Ldh) and diacetyl reductase (Dr) in UV-3 were strongly attenuated, with the lowest activities at pH 7.0–7.5, and temperature between 36 and 39°C. Compared to the wild-type, the yield of diacetyl by UV-3 was increased 18.7-fold, up to 1.05 ± 0.01 g l−1. Acetoin and ethanol productions were decreased by 48.4 and 71.4%, respectively, but acetate yield was increased by 34.6%. Optimum medium for diacetyl production by UV-3 contained 10% glucose, 0.5% peptone, 0.5% yeast extract powder, 0.01% (NH4)2SO4, 0.1% citric acid, 0.2% MnSO4 and 0.2% MgSO4, and this was determined by one-factor-at-a-time approach. Data from the five level central composite designs demonstrated that initial pH of 7.0, temperature of 37°C and rotational speed of 180 rev/min were optimum processing parameters for diacetyl production. The maximum yield of diacetyl could reach 1.35 g l−1 in a 5-l bioreactor. These results showed an enhancement of the non-enzymatic oxidative decarboxylation of α-acetolactate and a decrease in the activities of Ald, Ldh and Dr as a consequence of diacetyl accumulation in UV-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anuradha R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375. doi:10.1016/S0032-9592(99)00080-1

    Article  CAS  Google Scholar 

  • Chuang LF, Collins EB (1968) Biosynthesis of diacetyl in bacteria and yeast. J Bacteriol 95:2083–2089

    CAS  Google Scholar 

  • Cogan TM (1981) Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis ssp. diacetylactis. J Dairy Res 48:489–495

    CAS  Google Scholar 

  • Cogan TM, Fitzgerald RJ, Doonan S (1984) Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. J Dairy Res 51:597–604

    Article  CAS  Google Scholar 

  • Feng DR, Shang XQ, Zhou WL, Zhu SR, Qiu WZ, Zhang DY, Li ZH, Sun SQ, Shi JG (1993) Study on the model SBA-40 l-glutamate and glucose bifunctional analyser used in the fermentation process. Food Ferment Ind 4:33–37

    Google Scholar 

  • Goupil N, Cortier G, Ehrlich SD, Renault P (1996) Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol 62:2636–2640

    CAS  Google Scholar 

  • Goupil-Feuillerat N, Cocaign-Bousquet M, Godon JJ, Ehrlich SD, Renault P (1997) Dual role of α-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285–6293

    CAS  Google Scholar 

  • Goupil-Feuillerat N, Corthier G, Godon JJ, Ehrlich SD, Renault P (2000) Transcriptional and translational regulation of alphaacetolactate decarboxylase of Lactococcus lactis subsp. lactis. J Bacteriol 182:5399–5408. doi:10.1128/JB.182.19.5399-5408.2000

    Article  CAS  Google Scholar 

  • Henriksen CM, Nilsson D (2001) Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Appl Microbiol Biotechnol 56:767–775. doi:10.1007/s002530100694

    Article  CAS  Google Scholar 

  • Hickey MW, Hiller AJ, Jago GR (1983) Metabolism of pyruvate and citrate in Lactobacilli. Aust J Biol Sci 36:487–496

    CAS  Google Scholar 

  • Hugenholtz J, Starrenburg MJC (1992) Diacetyl production by different strains of Lactococcus lactis subsp. lactis biovar. diacetylactis and Leuconostoc sp. Appl Microbiol Biotechnol 38:17–22. doi:10.1007/BF00169412

    Article  CAS  Google Scholar 

  • Jyoti BD, Suresh AK, Venkatesh KV (2003) Diacetyl production and growth of Lactobacillus rhamnosus on multiple substrates. World J Microbiol Biotechnol 19:509–514. doi:10.1023/A:1025170630905

    Article  CAS  Google Scholar 

  • Krishnaswamy MA, Babel FJ (1951) Biacetyl production by culture of lactic acid producing Streptococci. J Dairy Sci 64:1527–1539

    Google Scholar 

  • Kuila RK, Ranganathan B (1977) Ultraviolet light-induced mutants of Streptococcus lactis subspecies diacetylactis with enhanced acid- or flavor producing abilities. J Dairy Sci 61:379–383

    Article  Google Scholar 

  • Lee W (1991). Production of diacetyl (2, 3-butanediol) by continuous fermentation with simultaneous product separation. PhD thesis, Purdue University, USA

  • Monnet C, Corrieu G (2007) Selection and properties of α-acetolactate decarboxylase-deficient spontaneous mutants of Streptococcus thermophilus. Food Microbiol 24:601–606. doi:10.1016/j.fm.2007.01.004

    Article  CAS  Google Scholar 

  • Monnet C, Schmitt P, Divies C (1994) Diacetyl production in milk by an α-acetolactic acid- accumulating strain of Lactococcus lactis ssp. lactis biovar diacetylactis. J Dairy Sci 77:2916–2924

    Article  CAS  Google Scholar 

  • Monnet C, Aymes F, Corrieu G (2000) Diacetyl and α-acetolactate overproduction by Lactococcus lactis subsp. lactis biovar diacetylactis mutants that are deficient in α-acetolactate decarboxylase and have a low lactate dehydrogenase activity. Appl Environ Microbiol 66:5518–5520. doi:10.1128/AEM.66.12.5518-5520.2000

    Article  CAS  Google Scholar 

  • Monnet C, Nardi M, Hols P, Gulea M, Corrieu G, Monnet V (2003) Regulation of branched-chain amino acid biosynthesis by alpha-acetolactate decarboxylase in Streptococcus thermophilus. Lett Appl Microbiol 36:399–405. doi:10.1046/j.1472-765X.2003.01326.x

    Article  CAS  Google Scholar 

  • Newberne P, Smith RL, Doull J, Feron VJ, Goodman JI, Murno IC, Portoghese PS, Waddell WJ, Wagner BM, Weil CS, Adams TB, Hallagan JB (2000) GRAS flavouring substances. Food Technol 54:66–83

    Google Scholar 

  • Phalip V, Monnet C, Schmitt P, Renault P, Godon JJ, Divies C (1994) Purification and properties of α-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118. FEBS Lett 351:95–99. doi:10.1016/0014-5793(94)00820-5

    Article  CAS  Google Scholar 

  • Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 61:3967–3971

    CAS  Google Scholar 

  • Ramos A, Jordan KN, Cogan TM, Santos H (1994) 13C nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis. Appl Environ Microbiol 60:1739–1748

    CAS  Google Scholar 

  • Ramos A, Lolkema JS, Konings WN, Santos H (1995) Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostocoenos. Appl Environ Microbiol 61:1303–1310

    CAS  Google Scholar 

  • Snoep JL, Teixteira de Mattos MJ, Starrenburg MJC, Hugenholtz J (1992) Isolation, characterization, and physiological role of the pyruvate dexydrogenase complex and α-acetolactate syntase of Lactococcus lactis subsp. lactis biovar diacetylactis. J Bacteriol 174:4838–4841

    CAS  Google Scholar 

  • Stormer FC (1975) 2, 3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol 41:526–529

    Google Scholar 

  • Suomalainen H, Ronkainen P (1968) Mechanism of diacetyl formation in yeast fermentation. Nature 220:792–793. doi:10.1038/220792a0

    Article  CAS  Google Scholar 

  • Vaningelgem F, Ghijsels V, Tsakalidou E, De Vuyst L (2006) Cometabolism of citrate and glucose by Enterococcus faecium FAIR-E 198 in the absence of cellular growth. Appl Environ Microbiol 72:319–326. doi:10.1128/AEM.72.1.319-326.2006

    Article  CAS  Google Scholar 

  • Yu P, Zhang LW, Xu Q, Han X (2006) Screening mutagenized Lactococcus lactis subsp. lactis biovar diacetyl strains overproducing diacetyl. Dairy Sci Technol 120:218–220 (in Chinese)

    Google Scholar 

  • Zhao L, Wang JY, Bao YM, Fu Y, Liu BS, An LJ (2007) Selection of Enterobacter aerogenes mutant with high productivity of diacetyl and analysis of fermentation kinetics. Biotechnology 17:59–64 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from National Basic Research Program of China (973, 2009CB724706). We thank Alan Kuei-chieh Chang for critical reading and correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Bao, Y., Wang, J. et al. Optimization and mechanism of diacetyl accumulation by Enterobacter aerogenes mutant UV-3. World J Microbiol Biotechnol 25, 57–64 (2009). https://doi.org/10.1007/s11274-008-9862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9862-8

Keywords

Navigation