Skip to main content
Log in

Incidence of diverse integrons and β-lactamase genes in environmental Enterobacteriaceae isolates from Jiaozhou Bay, China

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Environmental microbiology investigation was performed to determine the molecular diversity of β-lactamase genes among ampicillin-resistant bacteria from Jiaozhou Bay. β-lactamase genes were detected in 93.8% of the bacterial isolates identified as Enterobacteriaceae. The most frequently detected gene was bla TEM, followed by bla SHV, bla OAX-1, bla MOX and bla CMY. Most of the isolates (68.8%) were positive for the intI1 integrase gene, and two isolates were also found for the intI2 gene. The dfr and aadA gene cassettes were predominant. Anthropogenic contamination from onshore sewage processing plants might contribute predominantly to the β-lactamase gene reservoir in the studied coastal waters. Environmental antibiotic-resistant bacteria and resistance genes may serve as bioindicators of coastal environmental quality or biotracers of the potential contamination sources. This is the first report of the prevalence and characterization of β-lactamase genes and integrons in coastal Enterobacteriaceae from China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso A, Sanchez P, Martinez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3:1–9. doi:10.1046/j.1462-2920.2001.00161.x

    Article  CAS  Google Scholar 

  • Alpay-Karaoglu S, Ozgumus OB, Sevim E, Kolayli F, Sevim A, Yesilgil P (2007) Investigation of antibiotic resistance profiles and TEM-type β-lactamase gene carriage of ampicillin-resistant Escherichia coli strains isolated from drinking water. Ann Microbiol 57:281–288

    Article  CAS  Google Scholar 

  • Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  • Alvarez M, Tran JH, Chow N, Jacoby GA (2004) Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother 48:533–537. doi:10.1128/AAC.48.2.533-537.2004

    Article  CAS  Google Scholar 

  • Barlow RS, Pemberton JM, Desmarchelier PM, Gobius KS (2004) Isolation and characterization of integron-containing bacteria without antibiotic selection. Antimicrob Agents Chemother 48:838–842. doi:10.1128/AAC.48.3.838-842.2004

    Article  CAS  Google Scholar 

  • Biyela PT, Lin J, Bezuidenhout CC (2004) The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Sci Technol 50:45–50

    CAS  Google Scholar 

  • Bonfiglio G, Perilli M, Stefani S, Amicosante G, Nicoletti G (2002) Prevalence of extended spectrum β-lactamases among Enterobacteriaceae: an Italian survey. Int J Antimicrob Agents 19:213–217. doi:10.1016/S0924-8579(01)00497-6

    Article  CAS  Google Scholar 

  • Bradford PA (2001) Extended-spectrum β-lactamase in the 21st century: characterization, epidemiology and detection of this important resistance threat. Clin Microbiol Rev 14:933–951. doi:10.1128/CMR.14.4.933-951.2001

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. doi:10.1111/j.1462-2920.2006.01054.x

    Article  CAS  Google Scholar 

  • Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F et al (2008) Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 14:144–153. doi:10.1111/j.1469-0691.2007.01850.x

    Article  Google Scholar 

  • Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, Lariño E, Cisterna R (2003) Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA-1 genes in Enterobacteriaceae. FEMS Microbiol Lett 223:147–151. doi:10.1016/S0378-1097(03)00306-9

    Article  CAS  Google Scholar 

  • Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223. doi:10.1016/j.marpolbul.2004.10.038

    Article  CAS  Google Scholar 

  • Dang HY, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475. doi:10.1128/AEM.66.2.467-475.2000

    Article  CAS  Google Scholar 

  • Dang H, Zhang X, Song L, Chang Y, Yang G (2007) Molecular determination of oxytetracycline resistant bacteria and their resistance genes from mariculture environments of China. J Appl Microbiol 103:2580–2592. doi:10.1111/j.1365-2672.2007.03494.x

    Article  CAS  Google Scholar 

  • Dang HY, Ren J, Song LS, Sun S, An LG (2008a) Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Microb Ecol 55:237–246. doi:10.1007/s00248-007-9271-9

    Article  CAS  Google Scholar 

  • Dang HY, Ren J, Song LS, Sun S, An LG (2008b) Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China. World J Microbiol Biotechnol 24:209–217. doi:10.1007/s11274-007-9458-8

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • French GL (2005) Clinical impact and relevance of antibiotic resistance. Adv Drug Deliv Rev 57:1514–1527. doi:10.1016/j.addr.2005.04.005

    Article  CAS  Google Scholar 

  • Goldstein C, Lee MD, Sanchez S, Hudson C, Philips B, Register B (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45:723–726. doi:10.1128/AAC.45.3.723-726.2001

    Article  CAS  Google Scholar 

  • Henriques I, Moura A, Alves A, Saavedra MJ, Correia A (2006) Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters. Res Microbiol 157:938–947. doi:10.1016/j.resmic.2006.09.003

    Article  CAS  Google Scholar 

  • Hong Y, Park H, Lee W, Song J, Jeong D (2005) Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC β-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 53:319–323. doi:10.1016/j.diagmicrobio.2005.07.004

    Article  CAS  Google Scholar 

  • Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B Crit Rev 10:559–573. doi:10.1080/15287390600975137

    CAS  Google Scholar 

  • Kraft CA, Timbury MC, Platt DJ (1986) Distribution and genetic location of Tn7 in trimethoprim-resistant Escherichia coli. J Med Microbiol 22:125–131

    Article  CAS  Google Scholar 

  • Lee K, Lee M, Shin JH, Lee MH, Kang SH, Park AJ et al (2006) Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb Drug Resist 12:44–49. doi:10.1089/mdr.2006.12.44

    Article  CAS  Google Scholar 

  • Leverstein-van Hall MA, Blok HEM, Donders ART, Paauw A, Fluit AC, Verhoef J (2003) Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 187:251–259. doi:10.1086/345880

    Article  CAS  Google Scholar 

  • Levesque C, Piche L, Larose C, Roy PH (1995) PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185–191

    CAS  Google Scholar 

  • Lin J, Biyela PT (2005) Convergent acquisition of antibiotic resistance determinants amongst the Enterobacteriaceae isolates of the Mhlathuze River, KwaZulu-Natal (RSA). Water SA 31:257–260

    Google Scholar 

  • Liu Z, Wei H, Liu G, Zhang J (2004) Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuar Coast Shelf Sci 61:25–35. doi:10.1016/j.ecss.2004.04.009

    Article  CAS  Google Scholar 

  • Liu SM, Zhang J, Chen HT, Zhang GS (2005) Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Prog Oceanogr 66:66–85. doi:10.1016/j.pocean.2005.03.009

    Article  Google Scholar 

  • Mukherjee S, Chakraborty R (2006) Incidence of class 1 integrons in multiple antibiotic-resistant gram-negative copiotrophic bacteria from the River Torsa in India. Res Microbiol 157:220–226. doi:10.1016/j.resmic.2005.08.003

    Article  CAS  Google Scholar 

  • Nathisuwan S, Burgess DS, Lewis JS 2nd (2001) Extended-spectrum β-lactamases: epidemiology, detection, and treatment. Pharmacotherapy 21:920–928. doi:10.1592/phco.21.11.920.34529

    Article  CAS  Google Scholar 

  • Olsen JE (1999) Antibiotic resistance: genetic mechanisms and mobility. Acta Vet Scand Supp 92:15–22

    CAS  Google Scholar 

  • Ozgumus OB, Celik-Sevim E, Alpay-Karaoglu S, Sandalli C, Sevim A (2007) Molecular characterization of antibiotic resistant Escherichia coli strains isolated from tap and spring waters in a coastal region in Turkey. J Microbiol 45:379–387

    CAS  Google Scholar 

  • Pfaller MA, Segreti J (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum β-lactamases. Clin Infect Dis 42:S153–S163. doi:10.1086/500662

    Article  CAS  Google Scholar 

  • Philippon A, Arlet G, Jacoby GA (2002) Plasmid-determined AmpC type β-lactamases. Antimicrob Agents Chemother 46:1–11. doi:10.1128/AAC.46.1.1-11.2002

    Article  CAS  Google Scholar 

  • Ploy MC, Lambert T, Couty JP, Denis F (2000) Integrons: an antibiotic resistance gene capture and expression system. Clin Chem Lab Med 38:483–487. doi:10.1515/CCLM.2000.070

    Article  CAS  Google Scholar 

  • Roe MT, Vega E, Pillai SD (2003) Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation waters and sediments. Emerg Infect Dis 9:822–826

    CAS  Google Scholar 

  • Rosser SJ, Young HK (1999) Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 44:8–11. doi:10.1093/jac/44.1.11

    Article  Google Scholar 

  • Rupp ME, Fey PD (2003) Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 63:353–365. doi:10.2165/00003495-200363040-00002

    Article  CAS  Google Scholar 

  • Schwartz T, Kohnen W, Janses B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335. doi:10.1111/j.1574-6941.2003.tb01073.x

    Article  CAS  Google Scholar 

  • Shah AA, Hasan F, Ahmed S, Hameed A (2004) Extended-spectrum β-lactamases (ESBLs): characterization, epidemiology and detection. Crit Rev Microbiol 30:25–32. doi:10.1080/10408410490266429

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 9:3251–3270

    Google Scholar 

  • Villegas MV, Kattan JN, Quinteros MG, Casellas JM (2008) Prevalence of extended-spectrum β-lactamases in South America. Clin Microbiol Infect 14:154–158. doi:10.1111/j.1469-0691.2007.01869.x

    Article  CAS  Google Scholar 

  • Walther-Rasmussen J, Hoiby N (2002) Plasmid-borne AmpC β-lactamases. Can J Microbiol 48:479–493. doi:10.1139/w02-039

    Article  CAS  Google Scholar 

  • Weldhagen GF (2004) Integrons and β-lactamases—a novel perspective on resistance. Int J Antimicrob Agents 23:556–562. doi:10.1016/j.ijantimicag.2004.03.007

    Article  CAS  Google Scholar 

  • White DG, McDermott PF (2001) Biocides, drug resistance and microbial evolution. Curr Opin Microbiol 4:313–317. doi:10.1016/S1369-5274(00)00209-5

    Article  CAS  Google Scholar 

  • White PA, MacIver CJ, Rawlinson WD (2001) Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2661. doi:10.1128/AAC.45.9.2658-2661.2001

    Article  CAS  Google Scholar 

  • Yao F, Qian YS, Chen SZ, Wang PF, Huan YC (2007) Incidence of extended-spectrum β-lactamases and characterization of integrons in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated in Shantou, China. Acta Biochim Biophys Sin (Shanghai) 39:527–532. doi:10.1111/j.1745-7270.2007.00304.x

    Article  CAS  Google Scholar 

  • Young HK (1993) Antimicrobial resistance spread in aquatic environments. J Antimicrob Chemother 31:627–635. doi:10.1093/jac/31.5.627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China grants (NSFC Grant Nos. 40576069 and 40476058), the Hi-Tech Research and Development Program of China grant 2007AA091903, the China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-6 and DYXM-115-02-2-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyue Dang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Dang, H. & Ding, Y. Incidence of diverse integrons and β-lactamase genes in environmental Enterobacteriaceae isolates from Jiaozhou Bay, China. World J Microbiol Biotechnol 24, 2889–2896 (2008). https://doi.org/10.1007/s11274-008-9827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9827-y

Keywords

Navigation