Skip to main content
Log in

Changes in the antibiotic production by co-culture of Rhizopus peka P8 and Bacillus subtilis IFO3335

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The co-culture of Bacillus subtilis IFO 3335 with Rhizopus peka P8 or Rhizopus oligosporus P12 in liquid medium was found to increase production of antibiotic activity and to alter the spectrum of activity relative to the pure cultures. However, a mixed culture of Rhizopus arrhizus P7 and Rhizopus oryzae P17 did not produce antibiotic activity. The concentration, ratio, and time of addition of B. subtilis to the R. peka culture was found to influence antibiotic yields. Solid-state fermentations using mixed cultures of R. peka and B. subtilis were investigated. The growth of Escherichia coli IFO 3792 as a target bacterium was inhibited by the mixed culture. These results suggest the possibility of biopreservation of fermented foods by novel co-culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee BA, Bose KS (1964) Biosynthesis of mycobacillin, a new antifungal peptide role of nucleic acid. J Bacteriol 87:1397–1406

    CAS  Google Scholar 

  • Benech RO, Kheadr EE, Lacroix C et al (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619

    Article  CAS  Google Scholar 

  • Domon HM, Mathieu GL, Repentigny DJ (1981) Changes in the activity of antifungals in mixed cultures of bacteria and yeast. Can J Microbiol 27:843–846

    Article  CAS  Google Scholar 

  • Du XL, Jia JS, Lu PF (2003) Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochem 38:1643–1646

    Article  CAS  Google Scholar 

  • Harwood CR (1992) Bacillus subtilis and its relative: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256

    Article  CAS  Google Scholar 

  • Hesseltine CW (1965) A millennium of fungi, food, and fermentation. Mycologia 57:149–197

    Article  CAS  Google Scholar 

  • Hoyt RP, Sizemore KR (1982) Competitive dominance by a bacteriocin-producing Vibrio harveyi strain. Appl Environ Microbiol 44:653–658

    CAS  Google Scholar 

  • Jurus AM, Sundberg JW (1976) Penetration of Rhizopus oligosporus into soybean in tempe. Appl Environ Microbiol 32:284–287

    CAS  Google Scholar 

  • Katz E, Demain LA (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474

    CAS  Google Scholar 

  • Kobayashi S, Okazaki N, Koseki T (1992) Purification and characterization of an antibiotic subdtance produced from Rhizopus oligosporus IFO 8631. Biosci Biotech Biochem 56:94–98

    Article  Google Scholar 

  • Leifert H, Chidburee S, Hsmpson S et al (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    CAS  Google Scholar 

  • Lemos LM, Dopazo PC, Toranzo EA et al (1991) Competitive dominance of antibiotic-producing marine bacteria in mixed cultures. J Appl Bacteriol 71:228–232

    CAS  Google Scholar 

  • Mitsue T, Tachibana K, Fujio Y (1999) Efficient kefiran production by a mixed culture of Lactobacillus kefiranofaciens KF-75 and yeast strains. Seibutsu-kogaku 77:99–103

    Google Scholar 

  • Morita H, Fukuda T, Kawakita H (2004) Effects of some metal ions on the production of an antibacterial substance by Rhizopus sp. MKU 24. Biocontrol Sci 9:111–115

    CAS  Google Scholar 

  • Mulyowidarso KR, Flete HG, Buckle AK (1989) The microbial ecology of soybean soaking for tempe production. Int J Food Microbiol 8:35–46

    Article  CAS  Google Scholar 

  • Mulyowidarso KR, Fleet HG, Buckle AK (1990) Association of bacteria with the fungal fermentation of soybean tempe. J Appl Bacteriol 68:43–47

    CAS  Google Scholar 

  • Nout JM, Rombouts MF (1990) Recent developments in tempe research. J Appl Bacteriol 69:609–633

    Google Scholar 

  • Patel SP, Huang S, Fisher S et al (1995) Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot 48:997–1003

    CAS  Google Scholar 

  • Pinchuk VI, Bressollier P, SoroKulova BI et al (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    Article  CAS  Google Scholar 

  • Samson AR, Van Kooij JA, De Boer E (1987) Microbiological quality of commercial tempeh in the Netherlands. J Food Prot 50:92–94

    Google Scholar 

  • Sasaki Y, Takao S, Hotta K (1970) Conversion of fumaric fermentation to succinic acids fermentation by the association of Rhizopus and Bacteria. J Ferment Technol 48:776–781

    CAS  Google Scholar 

  • Shimizu H, Mizuguchi T, Tanaka E et al (1999) Nisin production by a mixed-culture system consisting of Lactococus lactis and Kluyveromyces marxianus. Appl Environ Microbiol 65:3134–3141

    CAS  Google Scholar 

  • Sumi H (1997) Antibacterial activity of Bacillus natto—growth inhibition against Eschricchia coli O-157. Bioscience 14:47–50

    Google Scholar 

  • Taniguchi T, Nakazawa H, Takeda O et al (1998) Production of a mixture of antimicrobial organic acids from lactose by co-culture of Bifidobacterium longum and Propionibacterium freudenreichii. Biosci Biotechnol Biochem 62:1522–1527

    Article  CAS  Google Scholar 

  • Tuncle MG, Nout RJ, Rombouts MF (1989) Effect of acidification on the microbiological composition and performance of tempe starter. Food Microbiol 6:37–43

    Article  Google Scholar 

  • Wang LH, Ellis JJ, Hesseltine WC (1972) Antibacterial activity produced by molds commonly used in oriental food fermentations. Mycologia 64:218–221

    Article  CAS  Google Scholar 

  • Yamada Y, Ohtani Y, Mitsui Y et al (2001) Production of menaguinone (vitamine K2)-7 by Bacillus subtilis. J Biosci Bioeng 91:16–20

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kaori Morita, Kazuhiro Noguche, Ying Wang, and Kana Morita for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, T., Yamamoto, S. & Morita, H. Changes in the antibiotic production by co-culture of Rhizopus peka P8 and Bacillus subtilis IFO3335. World J Microbiol Biotechnol 24, 1893–1899 (2008). https://doi.org/10.1007/s11274-008-9690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9690-x

Keywords

Navigation