World Journal of Microbiology and Biotechnology

, Volume 24, Issue 9, pp 1731–1740 | Cite as

Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions

Original Paper


Microbial fermentation under strictly anaerobic conditions has been conventionally used for the production of 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate (PTT) and other polyester fibers. In the current study, we have identified eight strains of microorganism which are able to produce 1,3-propanediol under aerobic condition. Those strains were isolated from garden soil, which were enriched by culturing in LB medium with glycerol added under aerobic condition. The identities of those strains were established based on their 16S rRNA sequences and physiological characteristics. Results indicated 6 strains are Citrobacter freundii and 2 strains are Klebsiella pneumoniae subsp Penumoniae. One of Klebsiella pneumoniae subsp Penumoniae strains, designated as TUAC01, demonstrated comparable levels of 1,3-propanediol oxidoreductase, glycerol dehydratase and glycerol dehydrogenase activity to the anaerobic microorganisms described in the literature. Accordingly, in larger scales (5 l) fed-batch culture the TUAC01 strain showed a remarkable 1,3-propanediol producing potency under aerobic conditions. 60.1 g/l of 1,3-propanediol was yield after 42 h incubation in an agitating bioreactor; and in air-lift bioreactor 66.3 g/l of 1,3-propanediol was yield after 58.5 h incubation. The aerobic ferment process, reduced the product cost and made the biological method of 1,3-propanediol production more attractive.


1,3-Propanediol Aerobic Fermentation Klebsiella pneumoniae Screening 


  1. Abbad-Andaloussi S, Manginot-Du¨rr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterisation of Clostridium butyricum DSM 5431 mutants with increased resitance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417Google Scholar
  2. Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. Part III: enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552CrossRefGoogle Scholar
  3. Arntz D, Haas T, Müller A, Wiegand N (1991) Kinetische untersuchung zur hydrat isierung von acrolein. Chem Ing Tech 63:733–735CrossRefGoogle Scholar
  4. Barbirato F, Claret CC, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793CrossRefGoogle Scholar
  5. Barbirato F, Grivel JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448–1451Google Scholar
  6. Besson M, Gallezot P, Pigamo A, Reifsnyder S (2003) Development of an improved continuous hydrogenation process for the production of 1,3-propanediol using titania supported ruthenium catalysts. Appl Catal A 250:117–124CrossRefGoogle Scholar
  7. Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15–19CrossRefGoogle Scholar
  8. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26CrossRefGoogle Scholar
  9. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1, 3-propanedio. Appl Microbiol Biotechnol 52:289–297CrossRefGoogle Scholar
  10. Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1, 3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457CrossRefGoogle Scholar
  11. Cheng KK, Liu DH, Sun Y, Liu WB (2004) 1,3-Propanediol production by Kleblsiella pneumoniae under different aeration stategies. Biotechnol Lett 26:911–915CrossRefGoogle Scholar
  12. Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146CrossRefGoogle Scholar
  13. Cirde SJ, Stone L, Boruff CS (1945) Acrolein determination by means of tryptophane. Ind Eng Chem Anal Ed 17:259–262CrossRefGoogle Scholar
  14. Decker WD (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16:143–149CrossRefGoogle Scholar
  15. Forage RG, Lin ECC (1982) dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599Google Scholar
  16. Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98–100:687–698CrossRefGoogle Scholar
  17. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1, 3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126CrossRefGoogle Scholar
  18. Johnson EA, Levine R L, Lin ECC (1985) Inactivation of Glycerol Dehydrogenase of Klebsiella pneumoniae and the Role of Divalent Cations. J Bacteriol 164:479–483Google Scholar
  19. Johnson EA, Lin ECC (1987) Klebsiella pneumoniae 1,3-propanediol: NAD+ oxidoreductase. J Bacteriol 169:2050–2054Google Scholar
  20. Knifton JF, James TG, Slaugh LH, Allen KD, Weider PR, Powell JB (2004) One-step production of 1,3-propanediol from ethylene oxide and syngas with a cobalt-iron catalyst. United States Patent 6.750.373Google Scholar
  21. Koch JP, Hayashi S, Lin ECC (1964) The control of the dissimilation of glycerol and L-a-glycerolphosphate in Escherichia coli. J Biol Chem 239:3106–3108Google Scholar
  22. Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. United States Patent 5,686,276Google Scholar
  23. Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Anenbaum SWT (1983) System development for linked – fermentation products of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023Google Scholar
  24. Nemeth A, Kupcsulik B, Sevella B (2003) 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J Microbiol Biotechnol 19:659–663CrossRefGoogle Scholar
  25. Papanikolaou S, Patricia RS, Bernard P, Fabrice B, Michel F (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208CrossRefGoogle Scholar
  26. Peng QL, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296CrossRefGoogle Scholar
  27. Pflugmacher U, Gottschalk G, (1994) Development of an immobilized cell reactor for the productionof 1,3-propanediol by Citrobacter freundiiAppl Microbiol Biotechnol 41:313–316CrossRefGoogle Scholar
  28. Ruch FE, Lin ECC (1975) Independent Constitutive Expression of the Aerobic and Anaerobic Pathways of Glycerol Catabolism in Klebsiella aerogenes. J Bacterol 124:348–362Google Scholar
  29. Stieb M, Bernhard S (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140:139–146CrossRefGoogle Scholar
  30. Sun J, Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative Genomic Analysis of dha Regulon and Related Genes for Anaerobic Glycerol Metabolism in Bacteria. Biotechnol Prog 19:263–272CrossRefGoogle Scholar
  31. Veiga-da-Cunha MV, Foster MA (1992) 1,3-Propanediol:NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri. Appl Environ Microbiol 58:2005–2010Google Scholar
  32. Wang K, Martin CH, Scott JD (2003) Conversion of Glycerol to 1,3-Propanediol via Selective Dehydroxylation. Ind Eng Chem Res 42:2913–2923CrossRefGoogle Scholar
  33. Zeng AP, Bieb H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingP.R. China
  2. 2.Department of Biological Science and BiotechnologyYanshan UniversityQinhuangdaoP.R. China

Personalised recommendations