Skip to main content
Log in

Phenotypic and genotypic characterization of bacteriocins in clinical enterococcal isolates of Tunisia

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The presence of bacteriocin structural genes (entA, entB, entP, entQ, entAS-48, entL50A/B, bac31, and cylL) encoding different bacteriocins (enterocin A, enterocin B, enterocin P, enterocin Q, enterocin AS-48, enterocin L50A/B, bacteriocin 31 and cytolysin L, respectively), and the production of bacteriocin activity were analysed in 139 E. faecalis and 41 E. faecium clinical isolates of Tunisia. Forty-eight of 139 E. faecalis isolates (34%) and 7 of 41 of E. faecium isolates (17%) were bacteriocin producers. Sixty-two per cent of the bacteriocin-producing enterococci showed inhibitory activity against L. monocytogenes. Different combinations of entA, entB, entP, and entL50A/B genes were detected among the seven bacteriocin-producer E. faecium isolates, and more that one gene were identified in all the isolates. The entA gene was associated in most of the cases with entB gene in E. faecium isolates. Cyl LS were the unique genes detected among E. faecalis (in 24 of 48 bacteriocin-producer isolates, 50%). A β-hemolytic activity was demonstrated in 19 of the 24 cyl LS -positive E. faecalis isolates (79%), this activity being negative in the remaining five isolates. The presence of different bacteriocin structural genes and the production of antimicrobial activities seems to be a common trait of clinical enterococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aymerich T, Holo H, Havarstein LS et al (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

    CAS  Google Scholar 

  • Balla E, Dicks MT, Du Toit M et al (2000) Characterization and cloning of the genes encoding enterocin 1071A and 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE1071. Appl Environ Microbiol 66:1298–1304

    Article  CAS  Google Scholar 

  • Booth MC, Bogie CP, Sahl HG et al (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184

    Article  CAS  Google Scholar 

  • Casaus P, Nilsen T, Cintas LM et al (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiol 143:2287–2294

    Article  CAS  Google Scholar 

  • Cintas LM, Casaus P, Havarstein LS et al (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    CAS  Google Scholar 

  • Cintas LM, Casaus P, Herranz C et al (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 23:806–814

    Google Scholar 

  • Cintas LM, Casaus P, Holo H et al (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994

    CAS  Google Scholar 

  • Coburn P, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669

    Article  CAS  Google Scholar 

  • Coque TM, Patterson JE, Steckelberg JM et al (1995) Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229

    CAS  Google Scholar 

  • De Vuyst L, Foulquie Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318

    Article  CAS  Google Scholar 

  • Del Campo R, Tenorio C, Jiménez-Díaz R et al (2001) Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrob Agents Chemother 45:905–912

    Article  Google Scholar 

  • Dupont H, Montravers P, Mohler J et al (1998) Disparate findings on the role of virulence factors of E. faecalis in mouse and rat models of peritonitis. Infect Immun 66:22570–22575

    Google Scholar 

  • Franz CM, Worobo RW, Quadri LE et al (1999) Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178

    CAS  Google Scholar 

  • Franz CM, Van Belkum MJ, Holzapfel WH et al (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  Google Scholar 

  • Galvéz A, Giménez-Gallego G, Maqueda M et al (1989) Purification and amino acid composition of peptide antibiotic AS-48 produced by Streptococcus (Enterococcus) faecalis subsp. liquefaciens S-48. Antimicrob Agents Chemother 33:437–441

    Google Scholar 

  • Gilmore MS, Segarra RA, Booth MC et al (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176:7335–7344

    CAS  Google Scholar 

  • Huycke M, Gilmore S (1995) Frequency of aggregation substance and cytolysin genes among enterococcal endocarditis isolates. Plasmid 34:152–156

    Article  CAS  Google Scholar 

  • Huycke M, Spiegel A, Gilmore MS (1991) Bacterimia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 35:1626–1637

    CAS  Google Scholar 

  • Ike Y, Hashimoto H, Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45:528–530

    CAS  Google Scholar 

  • Jett BD, Jensen HG, Nordquist RE et al (1992) Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 60:2445–2452

    CAS  Google Scholar 

  • Joosten HM, Rodriguez E, Nunez M (1997) PCR detection of sequences similar to the AS-48 structural gene in bacteriocin-producing enterococci. Lett Appl Microbiol 24:40–42

    Article  CAS  Google Scholar 

  • Klibi N, Gharbi S Masmoudi A et al (2006) Antibiotic resistance and mechanisms implicated in clinical enterococci in a Tunisian Hospital. J Chemother 18:20–26

    CAS  Google Scholar 

  • Maqueda M, Galvez A, Martinez-Bueno M et al (1998) Widespread production of AS-48-like bacteriocins in strains of Enterococcus faecalis? Mol Microbiol 29:1318–1319

    Article  CAS  Google Scholar 

  • Murray BE (1990) The life and times of Enterococcus. Clin Microbiol Rev 3:46–65

    CAS  Google Scholar 

  • Murray BE (1998) Diversity among multidrug-resistant enterococci. Emerg Infect Dis 4:37–47

    Article  CAS  Google Scholar 

  • Nes IF, Diep DB, Holo H (2007) Bacteriocin diversityy in Streptococcus and Enterococcus. J Bacteriol 189:1189–1198

    Article  CAS  Google Scholar 

  • Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984

    Article  CAS  Google Scholar 

  • Park SH, Itoh K, Fujisawa T (2003) Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804. J Applied Microbiol 95:294–300

    Article  CAS  Google Scholar 

  • Poeta P, Costa D, Rojo-Bezares B et al (2007) Detection of antimicrobial activities and bacteriocin structural genes faecal enterococci of wild animals. Microbiol Res 162:257–263

    Google Scholar 

  • Semedo T, Santos MA, Martins P et al (2003) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41:2569–2576

    Article  CAS  Google Scholar 

  • Sørum H, Sunde M (2001) Resistance to antibiotics in the normal flora of animals. Vet Res 32:227–241

    Article  Google Scholar 

  • Tannock GW (1995) Normal microflora. An introduction to microbes inhabiting the human body. Chapman and Hall, London

    Google Scholar 

  • Tomita H, Fujimoto S, Tanimoto K et al (1997) Cloning and genetic and sequence analyses of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1. J Bacteriol 179:7843–7855

    CAS  Google Scholar 

  • Vincent GHE, Lars A, Dzun BD et al (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654

    Article  Google Scholar 

Download references

Acknowledgements

This study has been possible thanks to a research project financed by the Spanish Agency of International Collaboration (AECI), from the Ministerio de Asuntos Exteriores of Spain and from the Tunisian Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klibi, N., Jouini, A., Rojo-Bezares, B. et al. Phenotypic and genotypic characterization of bacteriocins in clinical enterococcal isolates of Tunisia. World J Microbiol Biotechnol 24, 653–657 (2008). https://doi.org/10.1007/s11274-007-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9519-z

Keywords

Navigation