World Journal of Microbiology and Biotechnology

, Volume 23, Issue 12, pp 1679–1683 | Cite as

Antimicrobial activity of various cationic molecules on foodborne pathogens

  • Mariachiara Conte
  • Francesco Aliberti
  • Laura Fucci
  • Marina Piscopo
Original Paper


Antibacterial effects of various arginine- and lysine-rich polycationic proteins and polymers were evaluated by broth and solid dilution assay on a range of foodborne pathogens, Gram-positive and Gram-negative bacteria. The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of α-poly-l-lysine (poly-lys), α-poly-l-arginine (poly-arg) and protamines from herring sperm (clupeine sulphate) and salmon sperm (salmine sulphate) were determined on Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella sonnei, Escherichia coli O157:H7 and Pseudomonas aeruginosa. All these molecules showed antibacterial activity on all strains with different MIC and MBC values. The molecular mechanisms underlying the effect of α-poly-l-arginine might be related to the entrance of the molecule into the cell. In fact α-poly-l-arginine labelled with 7-Diethylamino coumarin-3-carboxylic acid, succinimidyl ester (DEAC,SE) showed ability to permeate the cell membrane of B. cereus and E. coli O157:H7.


Antimicrobial activity Poly-L-arginine Cationic molecules Foodborne pathogens Protamine 


  1. Andersson E, Rydengard V, Sonesson A, Morgelin M, Bjorck L, Schmidtchen A (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271:1219–1226CrossRefGoogle Scholar
  2. Birkemo GA, Luders T, Andersen O, Nes IF, Nissen-Meyer J (2003) Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim Biophys Acta 1646:207–215Google Scholar
  3. Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as component of the host defense system. Plant Physiol 108:1353–1358CrossRefGoogle Scholar
  4. Fernandes JMO, Molle G, Kemp GD, Smith VJ (2004) Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 28:127–138CrossRefGoogle Scholar
  5. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390CrossRefGoogle Scholar
  6. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85Google Scholar
  7. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cell more efficiently than other polycationic homopolymers. J Pept Res 56:318–325CrossRefGoogle Scholar
  8. Nishikawa M, Ogawa K (2002) Distribution of microbes producing antimicrobial epsilon- poly-l-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68:3575–3581CrossRefGoogle Scholar
  9. Nishikawa M, Ogawa K (2004) Antimicrobial activity of a chelatable Poly(Arginyl-Histidine) produced by the ergot fungus Verticillium kibiense. Antimicrob Agents Chemother 48:229–235CrossRefGoogle Scholar
  10. Pellegrini A, Hulsmeier AJ, Hunziker P, Thomas U (2004) Proteolytic fragments of ovalbumin display antimicrobial activity. Biochim Biophys Acta 1672:76–85Google Scholar
  11. Potter R, Truelstrup Hansen L, Gill TA (2005) Inibition of foodborne bacteria by native and modified protamine: importance of electrostatic interactions. Int J Food Microbiol 103:23–34CrossRefGoogle Scholar
  12. Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691CrossRefGoogle Scholar
  13. Rezansoff AJ, Hunter HN, Jing W, Perk LY, Kim SC, Vogel HJ (2005) Interactions of the antimicrobial peptide Ac-FRWWHR-NH2 with model membrane systems and bacterial cells. J Pept Res 65:491–501CrossRefGoogle Scholar
  14. Silphaduang U, Hincke MT, Nys Y, Mine Y (2006) Antimicrobial proteins in chicken reproductive system. Biochem Biophys Res Commun 340:648–655CrossRefGoogle Scholar
  15. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96CrossRefGoogle Scholar
  16. Szokan G, Almas M, Krizsan K, Khlafulla AR, Tyihak E, Szende B (1997) Structure determination and synthesis of lysine isopeptides influencing cell proliferation. Biopolymers 42:305–318CrossRefGoogle Scholar
  17. Yoshida T, Nagasawa T (2003) Epsilon-poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26CrossRefGoogle Scholar
  18. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mariachiara Conte
    • 1
  • Francesco Aliberti
    • 2
  • Laura Fucci
    • 1
  • Marina Piscopo
    • 1
  1. 1.Department of Structural and Functional BiologyUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Biological SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations