Skip to main content
Log in

Effect of low-temperature fermentation on yeast nitrogen metabolism

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13°C. Low-temperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25°C. Specifically, cells at 13°C consumed less ammonium and glutamine, and more tryptophan. Low-temperature seemed to relax the nitrogen catabolite repression (NCR) as deduced from the gene expression of ammonium and amino acid permeases (MEP2 and GAP1) and the uptake of some amino acids subjected to NCR (i.e. arginine and glutamine). Low-temperature influences the quantity and the quality of yeast nitrogen requirements. Nitrogen-deficient grape musts and low temperature are two of the main prevalent causes of sluggish fermentations and, therefore, the effects of both growth conditions on yeast metabolism are of considerable interest for wine making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Aerny J (1996) Composés azotés des moûts et vins. Rev Suisse Viticulture Arboric Hortic 28:161–165

    Google Scholar 

  • Alexandre H, Rousseaux I, Charpentier C (1994) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20:173–183

    PubMed  CAS  Google Scholar 

  • Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamon JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Beltran G, Novo M, Rozes N, Mas A, Guillamon JM (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4:625–632

    Article  PubMed  CAS  Google Scholar 

  • Beltran G, Novo M, Torija MJ, Poblet M, Rozes N, Guillamon JM, Mas A (2002) Fermentaciones a bajas temperaturas. Tecnología del vino 1:73–76

    Google Scholar 

  • DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783

    Article  PubMed  CAS  Google Scholar 

  • Entian KD, Barnett J (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (eds), Wine microbiology and biotechnology. Harwood Academic Publishers, Switzerland

    Google Scholar 

  • Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2:433–470

    PubMed  CAS  Google Scholar 

  • Guillamon JM, van Riel NA, Giuseppin ML, Verrips CT (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res 1:169–175

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Viticulture 21:97–129

    CAS  Google Scholar 

  • Leao C, van Uden N (1985) Effect of ethanol and other alkanols on the temperature of glucose transport and fermentation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 22:359–363

    Article  CAS  Google Scholar 

  • Llauradó JM, Rozes N, Bobet R, Mas A, Constantí M (2002) Low temperature alcoholic fermentation in high sugar concentration grape must. J Food Sci 67:268–273

    Article  Google Scholar 

  • Macdonald AG (1987) The role of membrane fluidity in complex processes under high pressure. In: Marquis RE, Zimmerman AM, Jannasch HW (eds) Current perspectives in high pressure biology. Academic Press, London

    Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Stratherm JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  PubMed  CAS  Google Scholar 

  • Nagayama A, Kato C, Abe F (2004) The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Novo M, Beltran G, Torija MJ, Poblet M, Guillamon JM, Mas A, Rozes N (2003a) Fermentaciones a bajas temperatras: análisis químico y sensorial. Tecnología del vino 2:51–55

    Google Scholar 

  • Novo M, Torija MJ, Beltran G, Rozes N, Mas A, Guillamon JM (2003b) Revisión sobre las fermentaciones vínicas a baja temperatura. Perspectivas de futuro. Tecnología del vino 3:38–43

    Google Scholar 

  • Riou C, Nicaud JM, Barre P, Gaillardin C (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13:903–915

    Article  PubMed  CAS  Google Scholar 

  • Sa-Correia I, van Uden N (1983) Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and the maximum temperatures for growth of the yeasts Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnol Bioeng 25:1665–1667

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor, NY

    Google Scholar 

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Cell Biol 15:5492–5502

    Article  CAS  Google Scholar 

  • Sierkstra LN, Verbakel JM, Verrips CT (1992) Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. J Gen Microbiol 138:2559–2566

    PubMed  CAS  Google Scholar 

  • ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Article  PubMed  CAS  Google Scholar 

  • Tokai M, Kawasaki H, Kikuchi Y, Ouchi K (2000) Cloning and characterization of the CSF1 gene of Saccharomyces cerevisiae, which is required for nutrient uptake at low temperature. J Bacteriol 182:2865–2868

    Article  PubMed  CAS  Google Scholar 

  • Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozes N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136

    Article  PubMed  CAS  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400

    Article  PubMed  CAS  Google Scholar 

  • Wiame JM, Grenson M, Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant AGL2004-02307 from the Comisión Interministerial de Ciencia y Tecnología, Spain. The authors wish to thank the Language Service of the Rovira i Virgili University for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Guillamón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltran, G., Rozès, N., Mas, A. et al. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J Microbiol Biotechnol 23, 809–815 (2007). https://doi.org/10.1007/s11274-006-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9302-6

Keywords

Navigation