Advertisement

d-Psicose production from d-fructose using an isolated strain, Sinorhizobium sp.

  • Deok-Kun Oh
  • Nam-Hee Kim
  • Hye-Jung Kim
  • Chang-Su Park
  • Seon Won Kim
  • Minsu Ko
  • Bueng Wan Park
  • Min Ho Jung
  • Ki-Hong Yoon
Original Paper

Abstract

Sinorhizobium sp., which can convert d-fructose into d-psicose, was isolated from soil. The optimal pH, temperature, and cell concentration for d-psicose production with the isolated strain were 8.5, 40°C, and 60 mg/ml, respectively. The toluene-treated cells showed 2.5- and 4.8-fold increases in the d-psicose concentration and productivity compared with untreated washed cells. Under the optimal conditions, the toluene-treated cells produced 37 g d-psicose/l from 70% (w/v) (3.9 M) d-fructose after 15 h.

Keywords

Biotransformation d-Fructose Isolated strain d-Psicose Sinorhizobium sp. 

Notes

Acknowledgment

This study was supported by grant number R01-2004-000-10012-0 from the Basic Research Program of the Korea Science & Engineering Foundation (KOSEF).

References

  1. Bilik V, Tihlarik K (1973) Reaction of saccharides catalyzed by molybdate ions. IX. Epimerization of ketohexoses. Chem Zvesti 28:106–109Google Scholar
  2. Cánovas M, Torroglosa T, Iborra JL (2005) Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzyme Microb Technol 37:300–308CrossRefGoogle Scholar
  3. Doner LW (1979) Isomerization of d-fructose by base: liquid-chromatographic evaluation and the isolation of d-psicose. Carbohydr Res 70:209–216CrossRefGoogle Scholar
  4. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric determination of sugars and related subtance. Anal Chem 28:350–356CrossRefGoogle Scholar
  5. Flores MV, Voget CE, Ertola RJJ (1994) Permeabilization of yeast cells (Kluyveromyces lactis) with organic solvents. Enzyme Microb Technol 16:340–346CrossRefGoogle Scholar
  6. Granstrom TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94Google Scholar
  7. Hossain MA, Wakabayashi H, Goda F, Kobayashi S, Maeba T, Maeta H (2000) Effect of the immunosuppressants FK506 and d-allose on allogenic orthotopic liver transplantation in rats. Transplant Proc 32:2021–2023Google Scholar
  8. Hossain MA, Izuishi K, Tokuda M, Izumori K, Maeta H (2004) d-Allose has a strong suppressive effect against ischemia/reperfusion injury: a comparative study with allopurinol and superoxide dismutase. J Hepatobiliary Pancreat Surg 11:181–189CrossRefGoogle Scholar
  9. Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58:2168–2171CrossRefGoogle Scholar
  10. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK (2006) Characterization of an Agrobacterium tumefaciens d-psicose-3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol 72:981–985CrossRefGoogle Scholar
  11. Lee YJ, Kim CS, Oh DK (2004) Lactulose production by β-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl Microbiol Biotechnol 64:787–793CrossRefGoogle Scholar
  12. Levin GV (2002) Tagatose, the new GRAS sweetener and health product. J Med Food 5:23–36CrossRefGoogle Scholar
  13. Longo MA, Combes D (1999) Thermostability of modified enzymes: a detailed study. J Chem Technol Biotechnol 74:25–32CrossRefGoogle Scholar
  14. Matsuo T, Izumori K (2004) d-Psicose, a rare sugar that provides no energy and additionally beneficial effects for clinical nutrition. Asia Pac J Clin Nutr 13:S127Google Scholar
  15. Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H (2001) Dietary d-psicose, a C-3 epimer of d-fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac J Clin Nutr 10:233–237CrossRefGoogle Scholar
  16. McDonald EJ (1967) A new sythesis of d-psicose (d-ribo-hexulose). Carbohydr Res 5:106–108CrossRefGoogle Scholar
  17. Muniruzzaman S, Pan YT, Zeng Y, Atkins B, Izumori K, Elbein AD (1996) Inhibition of glycoprotein processing by l-fructose and l-xylulose. Glycobiology 6:795–803CrossRefGoogle Scholar
  18. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K, Tokuda M (2003) A novel inhibitory effect of d-allose on production of reactive oxygen species from neutrophils. J Biosci Bioeng 96:89–91Google Scholar
  19. Takeshita K, Ishida Y, Takada G, Izumori K (2000) Direct production of allitol from D-fructose by a coupling reaction using D-tagatose 3-epimerase, ribitol dehydrogenase and formate dehydrogenase. J Biosci Bioeng 90:545–548Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Deok-Kun Oh
    • 1
  • Nam-Hee Kim
    • 1
  • Hye-Jung Kim
    • 1
  • Chang-Su Park
    • 1
  • Seon Won Kim
    • 2
  • Minsu Ko
    • 3
  • Bueng Wan Park
    • 4
  • Min Ho Jung
    • 4
  • Ki-Hong Yoon
    • 4
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoul Korea
  2. 2.Environmental Biotechnology National Core Research CenterGyeongsang National UniversityJinjuKorea
  3. 3.Institute of Molecular GeneticsSolgent Co., Ltd.DaejeonKorea
  4. 4.School of Food Science and BiotechnologyWoosong UniversityDong-gu, DaejeonKorea

Personalised recommendations