Skip to main content
Log in

Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae

  • ORIGINAL PAPER
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alteriis E, Silvestro G, Poletto M, Romano V, Capitanio D, Compagno C, Parascandola P (2004) Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. J Biotechnol 109:83–92

    Article  CAS  Google Scholar 

  • Antranikian G (1992) Microbial degradation of starch. In: Winkel G (ed.), Microbial degradation of natural products. VCH Publishers, Germany, pp 27–51

    Google Scholar 

  • Beshay U (2003) Production of alkaline protease by Teredinobacter turnirae cells immobilized in Ca-alginate beads. African J Biotechnol 2:60–65

    CAS  Google Scholar 

  • Brink RH, Dubach P, Lynch DL (1960) Measurement of carbohydrate in soil hydrolases with anthrone. Soil Sci 89:157–166

    Article  CAS  Google Scholar 

  • Brodelius P, Vandamme EJ (1987) Immobilized cell systems. In: Rehm HJ, Reed G (eds), Biotechnology, vol 7a. VCH Verlagsgesellschaft, Germany, pp 403–463

    Google Scholar 

  • Bucke C (1983) Immobilized cells. Phil Trans R Soc Lond B 300:369–389

    CAS  Google Scholar 

  • Bucke C (1987) Cell immobilization in calcium alginate. In: Mosbach K (Ed.), Methods in enzymology, vol 135B. Academic press, New York, pp. 175–189

    Google Scholar 

  • Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256

    Article  CAS  Google Scholar 

  • Ellaiah P, Prabhakar T, Ramakrishna B, Thaer Taleb A, Adinarayana K (2004) Production of lipase by immobilized cells of Aspergillus niger. Process Biochem 39:525–528

    Article  CAS  Google Scholar 

  • Emerson R (1941) An experimental study of life cycle and taxonomy of Allomyces. Lloydia 4:77–144

    Google Scholar 

  • Federici F, Petruccioli M, Miller MW (1990a) Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized-bed reactor. Appl Microbiol Biotechnol 33:407–409

    Article  CAS  Google Scholar 

  • Federici RG, Federici F, Petruccioli M (1990b) Continuous production of glucoamylase by immobilized growing cells of Aureobasidium pullulans. Biotechnol Lett 12:661–666

    Article  Google Scholar 

  • Iqbal M, Edyvean RGJ (2004) Alginate coated loofa sponge discs for the removal of cadmium from aqueous solutions. Biotechnol Lett 26:165–169

    Article  CAS  Google Scholar 

  • Iqbal M, Zafar SI (1993) Bioactivity of immobilized microalgal cells: application potential of vegetable sponge in microbial biotechnology. Lett Appl Microbiol 17:289–291

    Google Scholar 

  • Iqbal M, Zafar SI (1994) Vegetable sponge as a matrix to immobilize micro-organisms: a trial study for hyphal fungi, yeast and bacteria. Lett Appl Microbiol 18:214–217

    CAS  Google Scholar 

  • Jamuna R, Ramakrishna V (1992) Continuous synthesis of thermostable α-amylase by Bacillus cells immobilized in calcium alginate. Enzyme Microb Technol 14:36–41

    Article  CAS  Google Scholar 

  • Kanlayakrit W, Ishimatsu K, Nakao M, Hayashida S (1987) Characteristics of raw starch digesting glucoamylase from thermophilic fungus Rhizomucor pusillus. J Ferment Technol 65:379–385

    Article  CAS  Google Scholar 

  • Kierstan MPJ, Bucke C (1977) The immobilization of microbial cells, subcellular organelles and enzymes in calcium alginate gels. Biotechnol Bioeng 19:387–397

    Article  CAS  Google Scholar 

  • Kierstan MPJ, Coughlan MP (1985) Immobilization of cells and enzymes by gel entrapment. In: Woodward J (Ed.), Immobilized cells and enzymes: a practical approach. IRL Press, Washington DC, pp 39–48

    Google Scholar 

  • Kuek C (1991) Production of glucoamylase using Aspergillus phoenicus immobilized in calcium alginate beads. Appl Microbiol Biotechnol 35:466–470

    Article  CAS  Google Scholar 

  • Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolysing, thermostable and neutral glucoamylase of a thermophilic mould Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944

    Article  CAS  Google Scholar 

  • Li G-X, Linko Y-Y, Linko P (1984) Glucoamylase and α-amylase production by immobilized Aspergillus niger. Biotechnol Lett 6:645–650

    Article  CAS  Google Scholar 

  • Liu Y-K, Seki M, Tanaka H, Furusaki S (1998) Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. J Ferment Bioeng 85:416–421

    Article  CAS  Google Scholar 

  • Meagher MM, Reilly PJ (1989) Kinetics of the hydrolysis of di- and trisaccharides by Aspergillus niger glucoamylses I and II. Biotechnol Bioeng 34:689–693

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Norouzian D, Akbarzadeh A, Scharer JM, Young MM (2006) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  CAS  Google Scholar 

  • Nunez MJ, Lema JM (1987) Cell immobilization: application to alcohol production. Enzyme Microb Technol 9:642–651

    Article  CAS  Google Scholar 

  • Ogbonna JC, Liu Y-C, Liu Y-K, Tanaka H (1994) Loofa (Luffa cylindrica) sponge as a carrier for microbial cell immobilization. J Ferment Bioeng 78:437–442

    Article  CAS  Google Scholar 

  • Ogbonna JC, Tomiyama S, Liu Y-C, Tanaka H (1997) Efficient production of ethanol by cells immobilized in loofa (Luffa cylindrica) sponge. J Ferment Bioeng 84:271–274

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  Google Scholar 

  • Papagianni M, Joshi N, Moo-Young M (2002) Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J Indust Microbiol Biotechnol 29:259–263

    Article  CAS  Google Scholar 

  • Polakovic M, Bryjak J (2004) Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem Eng J 18:57–64

    Article  CAS  Google Scholar 

  • Rao VB, Sastri NV, Subba Rao PV (1981) Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginosus. Biochem J 193:379–387

    Google Scholar 

  • Reilly PJ (1999) Protein engineering of glucoamylase to improve industrial performance-a review. Starch/Starke 51:269–274

    Article  CAS  Google Scholar 

  • Roble ND, Obgonna JC, Tanaka H (2003a) A novel circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol. Appl Microbiol Biotechnol 60:671–678

    CAS  Google Scholar 

  • Roble ND, Obgonna JC, Tanaka H (2003b) l-Lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica). Biotechnol Lett 25:1093–1098

    Article  CAS  Google Scholar 

  • Saeed A, Muhammad I (2006) Immobilization of blue green microalgae on loofa sponge to biosorb cadmium in repeated shake flask batch and continuous flow fixed bed column reactor system. World J Microbiol Biotechnol 22:775–782

    Article  CAS  Google Scholar 

  • Satyanarayana T, Noorwez SM, Kumar S, Rao JLUM, Ezhilvannan M, Kaur P (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32:276–279

    Article  CAS  Google Scholar 

  • Slokoska LS, Angelova MB (1998) Immobilization of polymethylgalacturonase producing Aspergillus niger on Luffa sponge material. Z Naturforsch  C 53:968–972

    CAS  Google Scholar 

  • Subrahmanyam A, Mehrotra BS, Thirumalachar MJ (1977) Thermomucor, a new genus of Mucorales. Georgia J Sci 35:1–6

    Google Scholar 

  • Tanaka H, Ohta T, Harada S, Ogboona JC, Yajima M (1994) Development of a fermentation method using immobilized cells under unsterile conditions: 1. Protection of immobilized cells against anti-microbial substances. Appl Microbiol Biotechnol 41:544–550

    Article  CAS  Google Scholar 

  • Thorsen TS, Johnsen AH, Josefsen K, Jensen B (2006) Identification and characterization of glucoamylase from the fungus Thermomyces lanuginosus. Biochem Biophys Acta 1764:671–676

    CAS  Google Scholar 

  • Tosi LRO, Terenzi HF, Jorge JA (1993) Purification and characterization of an extracellular glucoamylase from the thermophilic Humicola grisea var. thermoidea. Can J Microbiol 39:846–852

    Article  CAS  Google Scholar 

  • Vignoli JA, Celligoi MAPC, Silva RSF (2006) Development of a statistical model for sorbitol production by free and immobilized Zymomonas mobilis in loofa sponge Luffa cylindrica. Process Biochem 41:240–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank University Grants Commission, Government of India for providing financial assistance during the course of this investigation, and Mr. Rajesh Pathania and Mr. Girish (All India Institute of Medical Sciences, New Delhi, India) for providing technical assistance in carrying out scanning electron microscopy of the alginate beads. Pardeep Kumar is also grateful to Council of Scientific and Industrial Research, Government of India for awarding Junior/Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Satyanarayana, T. Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae . World J Microbiol Biotechnol 23, 509–517 (2007). https://doi.org/10.1007/s11274-006-9253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9253-y

Keywords

Navigation