Skip to main content
Log in

Molecular sequencing and analysis of soluble methane monooxygenase gene clusters from methanotroph Methylomonas sp. GYJ3

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

A methanotroph Methylomonas sp. GYJ3 was isolated, whose sMMO genes and 16S rDNA were sequenced and analysed, demonstrating that the bacterium might be a type I methanotroph (γ-Proteobacteria) and was closer to Methylomonas sp. KSWIII/KSPIII. This result was consistent with the result previously determined by biochemistry and morphological taxonomy. Sequence comparison among six open reading frames and the deduced amino acid sequences of the sMMO genes from six strains revealed that the strain GYJ3 had highly conserved regions in MMOX with other strains, amounting to 78–99% homology at protein level and 71–97% homology at DNA level. Highly conserved sequences lay in two iron-binding regions. Furthermore, scanning electron microscopy of the strain GYJ3 showed rod shapes with a slightly bent configuration on the even surfaces and with plump bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MMO:

methane monooxygenase

sMMO:

soluble MMO

pMMO:

particulate MMO

MMOH:

hydroxylase

MMOX:

α subunit of MMOH

MMOY:

β subunit of MMOH

MMOZ:

γ subunit of MMOH

ORFY/MMOD:

an unknown function component of MMO

MMOB:

a coupling protein of MMO

MMOC:

reductase of MMO

SEM:

scanning electron microscopy

References

  • Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45:182–185

    Article  CAS  Google Scholar 

  • Brusseau GA, Bulygina ES, Hanson RS (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636

    CAS  Google Scholar 

  • Cardy DLN, Laidler VG, Salmond PC, Murrell JC (1991) Molecular analysis of the methane monooxygenase MMO gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol 5:335–342

    Article  CAS  Google Scholar 

  • David WM (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, USA. ISBN 0-879-69597-8

  • Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568

    Article  CAS  Google Scholar 

  • Green J, Dalton H (1985) Protein B of soluble methane monooxygenase from Methylococcus capsulatus Bath. J Biol Chem 260:15795–15801

    CAS  Google Scholar 

  • Groees S, Laramee L Wendlandt KD, Mcdonald LR, Miguez CB, Kleber HP (1999) Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI14. Appl Environ Microbiol 65:3929–3935

    Google Scholar 

  • Grosse S, Mueller C, Roggel G, Wendl KD, Miguez CB, Klebeer HP (2003) Screening for soluble methane monooxygenase in methanotrophic bacteria using combined molecular and biochemical for hydroxylase detection methods. J Basic Microbiol 43:8–17

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Jahng D, Kim CS, Hanson RS, Wood TK (1996) Optimisation of␣trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnol Bioeng 51:349–359

    Article  CAS  Google Scholar 

  • Jahng D, Wood TK (1994) Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Environ Microbiol 60:2473–2482

    CAS  Google Scholar 

  • Kang LD (2003) Techniques of biological electron microscopy. University of Science and Technology of China Press, China. ISBN 7-312-01536-0

  • Kopp DA, Lippard SJ (2002) Soluble methane monooxygenase, activation of dioxygen and methane. Curr Opin Chem Biol 6:568–576

    Article  CAS  Google Scholar 

  • Lloyd JS, Finch R, Dalton H, Murrell JC (1999) Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. Microbiology 145:461–470

    Article  CAS  Google Scholar 

  • Lund J, Dalton H (1985) Further investigations of the FAD and Fe2S2 redox centres of component C NADH, acceptor reductase of the soluble methane monooxygenase from Methylococcus capsulatus Bath. Eur J Biochem 147:291–296

    Article  CAS  Google Scholar 

  • McDonald IR, Uchiyama H, Kambe S, Yagi O, Murrell JC␣(1997) The soluble methane monooxygenase gene cluster␣of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl Environ Microbiol 63:1898–1904

    CAS  Google Scholar 

  • Merkx M, Lippard SJ (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenases from Methylococcus capsulatus Bath. J Biol Chem 277:5858–5865

    Article  CAS  Google Scholar 

  • Misener S, Krawetz SA (1999) Bioinformatics methods and protocols. Humana Press, USA. ISBN 1-59259-192-2

  • Murrell JC (1994) Molecular genetics of methane oxidation. Biodegradation 5:145–149

    Article  CAS  Google Scholar 

  • Murrell J C, McDonald IR, Bourne DG (1998) Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114

    Article  CAS  Google Scholar 

  • Nielsen AK, Gerdes K, Degn H, Murrell JC (1996) Regulation of bacterial methane oxidation, transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus Bath is repressed by copper ions. Microbiology 142:1289–1296

    CAS  Google Scholar 

  • Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409

    Article  CAS  Google Scholar 

  • Ning ZZ, Yi SY, Miao DX, Li SB (1990) Screeing and chracteristics of methanotrophic bacteria. Microbiology (China) 17:121–124

    Google Scholar 

  • Patelt RN, Savas JC (1987) Purification and properties of the hydroxylase component of methane monooxygenase. J␣Bacteriol 169:2313–2317

    Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543

    Article  CAS  Google Scholar 

  • Shen RN, Yu CL, Ma QQ, Li SB (1997) Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria, purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Archiv Biochem Biophys 345:223–229

    Article  CAS  Google Scholar 

  • Shigematsu T, Hanada S, Eguchi M, Kamagata Y, Kanagawa T, Kurane R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. Strains and detection of methanotrophs during In Situ bioremediation. Appl Environ Microbiol 65:5198–5206

    CAS  Google Scholar 

  • Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H (2002) Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microbiol 68:5265–5273

    Article  CAS  Google Scholar 

  • Stafford GP, Scanlan J, McDonald IR, Murrell JC (2003) rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149:1771–1784

    Article  CAS  Google Scholar 

  • Ward N, Larsen Q, Sakwa J, Bruseth L, Khouri H (2004) Genomic insights into methanotrophy, the complete genome sequence of Methylococcus capsulatus Bath. Public Library of Science Biology 2, e303

  • West CA, Salmond GPC, Dalton H, Murrell JC (1992) Functional expression in Escherichia coli. of protein B and protein C from soluble methane monooxygenase of Methylococcus capsulatus Bath. J Gen Microbiol 138:1301–1307

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.20573124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ben Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Sf., Li, Sb. & Tan, Hd. Molecular sequencing and analysis of soluble methane monooxygenase gene clusters from methanotroph Methylomonas sp. GYJ3 . World J Microbiol Biotechnol 23, 323–330 (2007). https://doi.org/10.1007/s11274-006-9227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9227-0

Keywords

Navigation