Skip to main content

Advertisement

Log in

New insight in staphylococcin research: bacteriocin and/or bacteriocin-like inhibitory substance(s) produced by S. aureus AB188

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Staphylococcus aureus AB188 (a clinical isolate from wound pus) has been found to produce bacteriocins and/or bacteriocin-like inhibitory substance(s) tentatively termed staphylococcin Bac188. It has a broad activity spectrum against many Gram-positive (e.g. B. subtilis, S. aureus, E. faecalis), Gram-negative bacteria (e.g. E. coli, S. typhi and S. dysenteriae), and dermatophytes including Microsporum  canis, Microsporum  gypseum, Trichophyton mentagrophytes, Trichophyton  longi and Trichophyton  rubrum. Interestingly, staphylococcin Bac188 also showed very potent activity against many clinical isolates of Mycobacterium tuberculosis. Staphylococcin Bac188 showed wide thermostability and remained stable over the wide pH range (pH 2–14). It was also resistant to treatment with chloroform, catalase, lipase and lysozyme, but showed sensitivity to proteinase K, trypsin and α-chymotrypsin suggesting its proteinaceous nature. Staphylococcin Bac188 revealed bactericidal effects on the S. aureus SS-1 sensitive strain as well as on E. coli and S. typhi, suggesting a similar mode of action on both Gram-negative and Gram-positive organisms. The antimicrobial, antidermatophytic and antimycobacterial activities expressed by S. aureus AB188 correlate with the production of a bacteriocin and/or bacteriocin-like inhibitory substance with properties similar to other staphylococcins reported earlier. To our knowledge, this is the first report describing such wide possible clinical applications of a bacteriocin and/or bacteriocin-like inhibitory substance produced by S. aureus AB188, suggesting further investigation for potential therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bhunia A.K., Johnson M.C., Ray B., 1988 Purification, characterization and antimicrobial spectrum of bacteriocin produced by Pediococcus  acidilaciti Journal of Applied Bacteriology 65:261–268

    PubMed  CAS  Google Scholar 

  • Chen H., Hoover D.G., 2003 Bacteriocins and their food applications Comprehensive Reviews in Food Science, Food and Safety 2:82–100

    CAS  Google Scholar 

  • Cleveland J., Montville T.J., Nes I.F., Chikindas M.L., 2001 Bacteriocins: safe, natural antimicrobials for food preservation International Journal of Food Microbiology 71:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cotter P.D., Hill C., Ross R.P., 2005 Bacterial lantibiotics: strategies to improve therapeutic potential Current Protein and Peptide Sciences 6:61–75

    Article  CAS  Google Scholar 

  • Crupper S.S, Gies A.J., Iandolo J.J., 1997 Purification and characterization of staphylococcin bacR1, a broad-spectrum bacteriocin Applied and Environmental Microbiology 63:4185–4190

    PubMed  CAS  Google Scholar 

  • Culliton B.J., 1992 Drug-resistant tuberculosis may bring epidemic Nature (London) 356:472–490

    Article  Google Scholar 

  • Daw M.A., Falkiner F.R., 1996 Bacteriocins: nature, function and structure Micron 27:467–479

    Article  PubMed  CAS  Google Scholar 

  • Diep D.B., Nes I.F., 2002 Ribosomally synthesized antibacterial peptides in Gram-positive bacteria Current Drug Targets 3:107–122

    Article  PubMed  CAS  Google Scholar 

  • Dye C., Scheele S., Dolin P., Pathania V., 1999 Global burden of tuberculosis, estimated incidence, prevalence and mortality by country Journal of theAmerican Medical Association 282:677–686

    Article  CAS  Google Scholar 

  • Eijsink V.G.H., Axelsson L., Diep D.B., Havarstein L.S., Holo H., Nes I.F., 2002 Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication Antonie Van Leeuwenhoek 81:639–654

    Article  PubMed  CAS  Google Scholar 

  • Ennahar S., Sashihara T., Sonomoto K., Ishizaki A., 2000 Class IIa bacteriocins: biosynthesis, structure and activity FEMS Microbiology Reviews 24:85–106

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald R.J., Morhart R.E., Marquez C., Adams B.O., 1986 Inhibition of caries in hamsters treated with staphylococcin 1580 Infection and Immunity 54:288–290

    PubMed  CAS  Google Scholar 

  • Franz C.M.A.P., Holzapfel W.H., Stiles M.E., 1999 Enterococci at the cross-roads of food safety? International Journal of Food Microbiology 47:1–24

    Article  PubMed  CAS  Google Scholar 

  • Furmanek B., Kaczorowski T., Bugalski R., Bielawski K., Bogdanowicz J., Podhajska A.J., 1999 Identification, characterization and purification of the lantibiotic staphylococcin T, a natural gallidermin variant Journal of Applied Microbiology 87:856–866

    Article  PubMed  CAS  Google Scholar 

  • Hanlin M.B., Kalchayanand N., Ray P., Ray B., 1993 Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity Journal of Food Protection 56:252–255

    CAS  Google Scholar 

  • Jack R.W., Tagg J.R., Ray B., 1995 Bacteriocins of Gram-positive bacteria Microbiological Review 59:171–200

    CAS  Google Scholar 

  • Joerger R.D., 2003 Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages Poultry Science 82:640–647

    PubMed  CAS  Google Scholar 

  • Kariba R.M., Siboe G.M., Dossagi S.F., 2001 In vitro antifungal activity of Schizozygia  coffaeoides bail (apocynaceae) extracts Journal of Ethnopharmacology 74:41–44

    Article  PubMed  CAS  Google Scholar 

  • Kruszewska D., Sahl H.-G., Bierbaum G., Pag U., Hynes S.O., Ljungh Å., 2004 Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model Journal of Antimicrobial Chemotherapy 54:648–653

    Article  PubMed  CAS  Google Scholar 

  • Magnusson J., Schnürer J., 2001 Lactobacillus coryniformis subsp. Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound Applied and Environmental Microbiology 67:1–5

    Article  PubMed  CAS  Google Scholar 

  • Marks J., 1974 The culture and identification of mycobacteria. In Willis A.T., Collins C.H., Eds. Public Health Laboratory Service Monograph, No. 5 Laboratory Methods, London

    Google Scholar 

  • Muriana P.M., Klaenhammer T.R., 1991 Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by lactobacillus spp Journal of Bacteriology 173:1779–88

    PubMed  CAS  Google Scholar 

  • Navaratna M.A.D.B., Sahl H.-G., Tagg J.R., 1998 Two component anti- Staphylococcus  aureus lantibiotic activity produced by Staphylococcus  aureus C55 Applied and Environmental Microbiology 64:4803–4808

    PubMed  CAS  Google Scholar 

  • Navaratna M.A.D.B., Sahl H.-G., Tagg J.R., 1999 Identification of genes encoding two-component lantibiotic production in Staphylococcus  aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene Infection and Immunity 67:4268–4271

    PubMed  CAS  Google Scholar 

  • Netz D.J.A., Sahl H.-G., Marcolino R., Nascimento J.D.S., de Oliveira S.S., Soares M.B., de Freire Bastos M.D.C., 2001 Molecular characterization of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus Journal of Molecular Biology 311:939–949

    Article  PubMed  CAS  Google Scholar 

  • Pag U., Sahl H.-G., 2002 Multiple activities in lantibiotics-models for the design of novel antibiotics Current Pharmacological Design 8:815–833

    Article  CAS  Google Scholar 

  • Parrot M., Charest M., Lavoie M.C., 1989 Production of mutacin-like substances by Streptococcus  mutans Canadian Journal of Microbiology 35:366–372

    Article  PubMed  CAS  Google Scholar 

  • Perruci S., Mancianti F., Cioni P.L., Flamini G., Morelli I., Macchioni G., 1993 In vitro antifungal activity of essential oils against some isolates of Microsporum  canis and Microsporum  gypseum Planta Medica 60:184–187

    Article  Google Scholar 

  • Riley M.A., Wertz J.E., 2002 Bacteriocins: evolution, ecology, and application Annual Review of Microbiology 56:117–137

    Article  PubMed  CAS  Google Scholar 

  • Ross R.P., Galvin M., McAuliffe O., Morgan S.M., Ryan M.P., Twomey D.P., Meaney W.J., Hill C., 1999 Developing applications for lactococcal bacteriocins Antonie van Leeuwenhoek 76:337–346

    Article  PubMed  CAS  Google Scholar 

  • Sahl H.-G., 1994 Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from Gram-positive bacteria Applied and Environmental Microbiology 60:752–755

    PubMed  CAS  Google Scholar 

  • Sahl H.-G., Bierbaum G., 1998 Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria Annual Reviews of Microbiology 52:41–79

    Article  CAS  Google Scholar 

  • Schillinger U., Lucke F.K., 1989 Antibacterial activity of Lactobacillus sake isolated from meat Applied and Environmental Microbiology 55:1901–1906

    PubMed  CAS  Google Scholar 

  • Shinefield H.R., Ribble J.C., Boris M., 1971 Bacterial interference between strains of Staphylococcus  aureus American Journal of Disable Children 121:148–152

    CAS  Google Scholar 

  • Ungermann V., Goeke K., Feidler H.P., Zahner H., 1991 Optimization of fermentation of gallidermin and epidermin In: Jung G., Sahl H.G., (Eds). Nisin and Novel Lantibiotics Leiden Escom Publisher pp. 410–421 ISBN 9072199111

    Google Scholar 

  • Yamane N., Chilima B.Z., Tosaka M., Okazawa Y., Tanno K., 1996 Determination of antimycobacterial activities of fluoroquinolones against clinical isolates of Mycobacterium  tuberculosis: comparative determination with egg based Ogawa and agar based Middlebrook 7H10 media Kekkaku 71:453–458

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is partly supported by the Higher Education Commission of Pakistan (HEC-No. 20–151/Acad-R/03) and the Pakistan Science Foundation (PSF-S-KU/CHEM-363) to S.A. Ali and S.A. Rasool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abid Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed, S., Rasool, S.A., Ahmed, S. et al. New insight in staphylococcin research: bacteriocin and/or bacteriocin-like inhibitory substance(s) produced by S. aureus AB188. World J Microbiol Biotechnol 22, 713–722 (2006). https://doi.org/10.1007/s11274-005-9095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9095-z

Keywords