Skip to main content
Log in

Optimization of Lipase-catalysed Synthesis of Butyl Butyrate Using a Factorial Design

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

A lipase from Candida rugosa immobilized on styrene-divinylbenzene copolymer was used to catalyse the direct esterification of butanol and butyric acid. A factorial design was employed to evaluate the effects of temperature (37–50 °C), substrate molar ratio of butyric acid to butanol (0.6 to 2.0) and enzyme amount (0.2–0.4 g) on the ester yield. The main effects were fitted by multiple regression analysis to a linear model and maximum ester yield could be obtained working at 41 °C with 0.4 g of lipase. The mathematical model obtained, representing the ester yield has been found to describe adequately the experimental results. Under optimal conditions, concentration of 32.4 g butyl butyrate/l that corresponds to a yield of 75% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcão V.M., Paiva A.L. and Malcata F.X. (1996). Bioreactors with lipases: State of the art. Enzyme and Microbial Technology 18: 392–416.

    Article  Google Scholar 

  • Box G.E.P., Hunter W.G., Hunter J.S. and Hunter W.G. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons. , New York.

    Google Scholar 

  • Castro H.F., Mendes A.A., Santos J.C. and Aguiar C.L. (2004). Modificação de óleos e gorduras por biotransformação. Química Nova 27: 146–156.

    Google Scholar 

  • Chowdary G.V., Ramesh M.N. and Prapulla S.G. (2000). Enzymatic synthesis of isoamyl isovalerate using immobilized lipase from Rhizomucor miehie: a multivariate analysis. Process Biochemistry 36: 331–339.

    Article  CAS  Google Scholar 

  • Faber K. (1997). Biotransformation in Organic Chemistry: A Textbook. Springer Produktions-Gesellschaft. , Berlin.

    Google Scholar 

  • Halling P.J. (1994). Thermodynamic predictions for biocatalysis in nonconventional media –theory tests and recommendations for experimental design and analysis. Enzyme and Microbial Technology 16: 178–206.

    Article  CAS  Google Scholar 

  • Lai D.T. and O’Connor J.O. (1999). Studies on synthesis of short chain alkyl esters catalysed by goat pregastic lipase. Journal of Molecular Catalysis B Enzymatic 6: 411–420.

    Article  CAS  Google Scholar 

  • Matsumoto M. and Ohashi K. (2003). Effect of immobilization on thermostability of lipase from Candida rugosa. Biochemical Engineering Journal 14: 75–77.

    Article  CAS  Google Scholar 

  • Oliveira P.C., Alves G.M. and Castro H.F. (2000a). Immobilization studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer. Biochemical Engineering Journal 5: 63–71.

    Article  Google Scholar 

  • Oliveira Alves P.C.; G.M. and Castro H.F. (2000b). Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno. Química Nova 23: 632–636.

    Google Scholar 

  • Pandey A., Benjamin S., Soccol C.R., Nigam P., Krieger N. and Thomaz-Soccol V. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry 29: 119–130.

    CAS  Google Scholar 

  • Rodriguez-Nogales J.M., Roura E. and Contreras E. (2005). Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry 40(1): 63–68.

    Article  CAS  Google Scholar 

  • Roy S.S. and Bhattacharyya D.K. (1993). Distinction between enzymatically and chemically catalysed interesterification. Journal of the American Oil Chemists’ Society 70: 1293–1294.

    CAS  Google Scholar 

  • Sharma R., Chisti Y. and Banerjee U.C. (2001). Production, purification, characterization and applications of lipases. Biotechnology Advances 19: 627–662.

    Article  CAS  Google Scholar 

  • Tischer W. and Kasche V. (1999). Immobilized enzymes: crystals or carriers?. Trends in Biotechnology 17: 326–335.

    Article  CAS  Google Scholar 

  • Villeneuve P., Muderhwa J.M., Graille J.M. and Haas M.J. (2000). Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B. Enzymatic 9: 113–148.

    Article  CAS  Google Scholar 

  • Vulfson E.N. 1994 In Lipases Their Structure, Biochemistry and Application, eds. Woolley P. & Petersen S.B. Cambridge, pp. 271–288. UK: Cambridge University Press, ISBN 0-521-44546-9.

  • Yahya A.R.M., Anderson W.A. and Moo-Young M. (1998). Ester synthesis in lipase-catalysed reactions. Enzyme and Microbial Technology 23: 438–450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J.C., de Castro, H.F. Optimization of Lipase-catalysed Synthesis of Butyl Butyrate Using a Factorial Design. World J Microbiol Biotechnol 22, 1007–1011 (2006). https://doi.org/10.1007/s11274-005-2818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-2818-3

Keywords

Navigation