Skip to main content

Advertisement

Log in

Diversity of arbuscular mycorrhizal (AM) fungi in mangroves of Chorao Island, Goa, India

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

For a desirable understanding of diversity and species composition of arbuscular mycorrhizal (AM) fungi, in true and associate mangrove plants, 17 true mangrove and their associate species belonging to ten families were assessed from Chorao Island, Goa, India. Maximum AM root colonization was recorded in Thespesia populnea and minimum in Avicennia marina. Rhizosphere soils of Ceriops tagal showed highest and that of Acrostichum aureum showed the least spore density. The results showed that the associate mangrove species were highly mycorrhizal compared to true mangrove plants. Our study recorded greater diversity involving thirty-two AM fungal species belonging to nine genera viz., Acaulospora, Claroideoglomus, Entrophospora, Funneliformis, Gigaspora, Glomus, Rhizophagus, Sclerocystis, and Scutellospora. Acaulospora was the dominant genus and A. dilatata was the dominant AM fungal species. Acaulospora dilatata was the most common AM species in both true and associate mangrove plants, revealing its wider adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal A, Kadian N, Karishma N, Tanwar A, Gupta KK (2012) Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J Appl Nat Sci 4:144–155

    CAS  Google Scholar 

  • Balachandran S, Mishra S (2012) Assessment of arbuscular mycorrhizal fungi (AM fungi) and glomalin in the rhizosphere of heavy metal polluted mangrove forest. Int J Environ Sci 1:392–401

    Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 373–389

    Google Scholar 

  • Blaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, p 297

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic carbon and available forms of phosphorus in soil. Soil Sci 59:39–45

    CAS  Google Scholar 

  • D’souza J, Rodrigues BF (2013a) Biodiversity of arbuscular mycorrhizal (AM) fungi in mangroves of Goa in West India. J For Res 24:515–523

    Google Scholar 

  • D’souza J, Rodrigues BF (2013b) Seasonal diversity of arbuscular mycorrhizal fungi in mangroves of Goa, India. Int J Biodivers. https://doi.org/10.1155/2013/196527

    Article  Google Scholar 

  • Dandan Z, Zhiwei Z (2007) Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol 37:118–128

    Google Scholar 

  • Day LD, Sylvia DM, Collins ME (1987) Interaction among vesicular-arbuscular mycorrhizae, soil, and landscape position. Soil Sci Soc Am J 51:635–639

    Google Scholar 

  • Fabián D, Guadarrama P, Hernadez-cuevas L, Ramos-zapata JA (2018) Arbuscular mycorrhizal fungi in a coastal wetland in Yucatan, Mexico. Bot Sci 96:1–11

    Google Scholar 

  • Folk RL (1968) Petrology of sedimentary rocks. Hemphils, Austin

    Google Scholar 

  • Gaur A, Adholeya A (1994) Estimation of VAM fungal spores in soil, a modified method. Mycorrhiza News 6:10–11

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth—physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, New York, pp 3–32

    Google Scholar 

  • Gupta N, Routaray S, Basak UC, Das P (2002) Occurrence of arbuscular mycorrhizal association in mangrove forest of Bhitarkanika, Orissa, India. Indian J Microbiol 42:247–248

    Google Scholar 

  • Hanway JJ, Heidel H (1952) Soil analysis method as used inn Iowa State College soil testing laboratory. Iowa Agric 57:1–31

    Google Scholar 

  • He X, Mourtov S, Steinberger Y (2002) Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes. Arid Land Res Manag 16:149–160

    Google Scholar 

  • Hindumathi A, Reddy BN (2011) Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.) Wilczek] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh state, India. Adv Biosci Biotechnol 2:275–286

    CAS  Google Scholar 

  • Hogarth JP (2015) The biology of mangroves and seagrasses. Oxford University Press, Oxford, p 1

    Google Scholar 

  • Hossain MD, Nuruddin AA (2016) Soil and mangrove: a review. J Environ Sci Technol 9:198–207

    Google Scholar 

  • Jaccard P (1912) The distribution of the flora in the alpines zone. New Phytol 11:37–50

    Google Scholar 

  • Jansa J, Erb A, Oberholzer HR, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    CAS  PubMed  Google Scholar 

  • Karthikeyan C, Selvaraj T (2009) Diversity of arbuscular mycorrhizal fungi (AMF) on the coastal saline soils of the West coast of Kerala, Southern India. World J Agric Sci 5:803–809

    CAS  Google Scholar 

  • Kathiresan K (2000) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430:185–205

    Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biol Fertil Soils 42:358–361

    Google Scholar 

  • Krazic-Sraj N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberscik A (2006) Mycorrhizal colonization in plants from intermittent aquatic habitats. Aquat Bot 85:331–336

    Google Scholar 

  • Kumar T, Ghose M (2008) Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil. Wetl Ecol Manag 16:471–483

    Google Scholar 

  • Lee PJ, Koske RE (1994) Gigaspora gigantea: seasonal, abundance and ageing of spores in a sand dune. Mycol Res 98:453–457

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–448

    CAS  Google Scholar 

  • Liu YJ, Mao L, He XH, Cheng G, Ma XJ, An LZ, Feng HY (2012) Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice. Mycorrhiza 22:31–39

    CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JL (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Nagi HM, Rodrigues RS, Murali MR, Jagtap TG (2014) Using remote sensing and GIS techniques for detecting land cover changes of mangrove habitats in Goa, India. Fac Sci Bull 26:21–33

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infections. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Radhika KP, Rodrigues BF (2007) Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquat Bot 86:291–294

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    CAS  PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia 23:515–531

    Google Scholar 

  • Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30:1148–1160

    CAS  PubMed  Google Scholar 

  • Rodrigues BF, Muthukumar T (2009) Arbuscular mycorrhizae of Goa—a manual of identification protocols. Goa University, Goa, pp 109–135

    Google Scholar 

  • Sappal SM, Ramanathan AL, Ranjan RK, Singh G (2014) Sedimentary geochemistry of Chorao Island, Mandovi mangrove estuarine complex, Goa. Indian J Mar Sci 43:1091–1100

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University: Create Space Independent Publishing Platform, pp 58

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    PubMed  Google Scholar 

  • Singh AK, Ansari A, Kumar D, Sarkar UK (2012) Status, biodiversity and distribution of mangroves in India: an overview. In: Proceedings of National Conference on Marine biodiversity, Lucknow, Uttar Pradesh State Biodiversity Board, Lucknow, pp 59–67

  • Simoes NR, Dias JD, Leal CM, Braghin LSM, Lansac-Toha FA, Bonecker CC (2013) Floods control the influence of environmental gradients on thediversity of zooplankton communities in a neotropical floodplain. Aquat Sci 75:607–617

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Amsterdam, p 3

    Google Scholar 

  • Sridhar KR, Roy S, Sudheep NM (2011) Assemblage and diversity of arbuscular mycorrhizal fungi in mangrove plant species of the southwest coast of India. In: Metras J (ed) Mangroves ecology, biology and taxonomy. Nova Science Publishers Inc., Hauppage, pp 257–274

    Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Trejo AD, Lara CL, Maldonado MIE, Zulueta RR, Sangabriel CW, Mancera LME, Negrete YS, Barois I (2013) Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA Fungus 4:161–167

    Google Scholar 

  • Walkley AJ, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6(9):e24512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li T, Li Y, Qiu Q, Li S, Xin G (2014) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65:603–610

    Google Scholar 

  • Wang Y, Qui Q, Yang Z, Hu Z, Tam NF, Xin G (2010a) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    CAS  Google Scholar 

  • Wang L, Mu M, Li X, Lin P, Wang W (2010b) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J Plant Ecol 4:292–301

    CAS  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJ (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Google Scholar 

  • Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH (2008) Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 25:955–981

    CAS  PubMed  Google Scholar 

  • Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171

    Google Scholar 

  • Zhao ZW (1999) Population composition and seasonal variation of VA mycorrhizal fungi spores in the rhizosphere soil of four Pteridophytes. Acta Bot Yunnanica 21:437–441

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankrita Gaonkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaonkar, S., Rodrigues, B.F. Diversity of arbuscular mycorrhizal (AM) fungi in mangroves of Chorao Island, Goa, India. Wetlands Ecol Manage 28, 765–778 (2020). https://doi.org/10.1007/s11273-020-09747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-020-09747-8

Keywords

Navigation