Skip to main content

The effect of water table levels and short-term ditch restoration on mountain peatland carbon cycling in the Cordillera Blanca, Peru

Abstract

Many tropical mountain peatlands in the Andes are formed by cushion plants. These unique cushion plant peatlands are intensively utilized for grazing and are also influenced by climate change, both of which alter hydrologic conditions. Little is known about the natural hydroperiods and greenhouse gas fluxes of these peatlands or the consequences of hydrologic alteration for these fluxes. Therefore, our objectives were to assess how carbon dioxide (CO2) and methane (CH4) fluxes varied across a hydrological gradient caused by ditching and evaluate how short-term carbon cycling responds after rewetting from ditch blocking in a tropical mountain peatland. The study was carried out in Huascarán National Park, Peru using static chamber methods. Comparing reference to highly drained conditions, mid-day net ecosystem exchange (NEE) was higher (1.07 ± 0.06 vs. 0.76 ± 0.11 g CO2 m−2 h−1), and the light compensation point for CO2 uptake was lower. Gas fluxes were relatively stable in the rewetted and reference treatments, with small positive responses of NEE to rising water tables. CH4 emissions averaged 2.76 ± 1.06 mg CH4 m−2 day−1, with negative fluxes at water tables >10 cm below the soil surface, and positive fluxes at higher water levels. Our results indicate that undrained peatlands appear to be carbon sinks, highly drained peatlands were likely carbon sources, and rewetting of moderately drained peatlands increased NEE and the ability to store carbon to undrained reference conditions. Ditching of peatlands will likely increase their susceptibility to negative climate change impacts, and hydrologic restoration could moderate these impacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abdalla M, Hastings A, Truu J, Espenberg M, Mander Ü, Smith P (2016) Emissions of CH4 from northern peatlands: a review of management impacts and implications for future management options. Ecol Evol 6:7080–7102

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  • Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Misson L, Montes-Helu M, Noormets A, Randerson JT, Starr G, Xiao J (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115:G00K02

    Article  Google Scholar 

  • Anderson EP, Marengo J, Villalba R, Halloy S, Young B, Cordero D, Gast F, Jaimes E, Ruiz D, Herzog SK, Martinez R (2011) Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H eds, Climate change and biodiversity in the Tropical Andes. 2011. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 348 pp

  • Benavides JC (2014) The effect of drainage on organic matter accumulation and plant communities of high-altitude peatlands in the Colombian tropical Andes. Mires Peat 15:1–15

    Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of Arctic and Alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the Tropical Andes. Science 23:1755–1756

    Article  Google Scholar 

  • Bubier JL, Crill PM, Moore TR et al (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob Biogeochem Cycles 12:703–714

    Article  CAS  Google Scholar 

  • Bubier JL, Gaytri B, Moore TR et al (2003) Spatial and temporal variability in growing-season net ecosystem CO2 exchange at a Large Peatland in Ontario, Canada. Ecosystems 6:353–367

    CAS  Google Scholar 

  • Carrascal DR, Maya MD, Elena M, Lagoueyte G, Jaramillo PA (2011) Increased climatic stress on high-Andean ecosystems in the Cordillera Central of Colombia (Chap. 12). In: Climate change and biodiversity in the Tropical Andes. pp 182–191

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236

    Article  Google Scholar 

  • Chanton JP (2005) The effect of gas transport on the isotope signature of CH4 in wetlands. Org Geochem 36:753–768

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003a) Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Can J Bot 81:477–491

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003b) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351

    Article  CAS  Google Scholar 

  • Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires Peat 3:1–10

    Google Scholar 

  • Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2017) An overview of peatland restoration in North America: where are we after 25 years? Restor Ecol 25:283–292

    Article  Google Scholar 

  • Chimner RA, Cooper DJ, Bidwell M, Culpepper A, Zillich K, Nydick K (2019a) A new method for restoring ditches in peatlands: ditch filling with fiber bales. Restor Ecol 27:63–69

    Article  Google Scholar 

  • Chimner RA, Bourgeau-Chavez LL, Grelik S, Hribljan JA, Planas Clarke AM, Polk MH, Lilleskov EA, Fuentealba B (2019b) Mapping extent and types of wetlands in the Cordillera Blanca. Wetlands, Peru. https://doi.org/10.1007/s13157-019-01134-1

    Book  Google Scholar 

  • Clymo RS (1970) The growth of sphagnum: methods of measurement. Br Ecol Soc 58:13–49

    Google Scholar 

  • Clymo RS (1987) Peatland ecology. Sci Prog 71(593–614):593–614

    Google Scholar 

  • Cooper DJ, Macdonald LH, Wenger SK, Woods SW (1998) Hydrologic restoration of a fen in Rocky Mountain National Park, Colorado, USA. Wetlands 18:335–345

    Article  Google Scholar 

  • Cooper DJ, Wolf EC, Colson C, Vering W, Granda A, Meyer M (2010) Alpine Peatlands of the Andes, Cajamarca, Peru. Arct Antarct Alp Res 42:19–33

    Article  Google Scholar 

  • Cooper DJ, Chimner RA, Merritt DM (2012) Mountain Wetlands of North America. In: Batzer D, Balswin A (eds) Wetland habitats of North America: ecology and conservation concerns. University of California Press, Berkeley

    Google Scholar 

  • Cooper DJ, Kaczynski K, Slayback D, Yager K (2015) Growth and organic carbon production in peatlands dominated by, Bolivia, South America. Arct Antarct Alp Res 47:505–510

    Article  Google Scholar 

  • Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017) Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE 12(5):e0175814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dullo BW, Grootjans AP, Roelofs JGM, Senbeta AF, Fritz C, Lamers LPM (2017) Radial oxygen loss by the cushion plant Eriocaulon schimperi prevents CH4 emissions from an East-African mountain mire. Plant Biol 19:736–741

    Article  CAS  PubMed  Google Scholar 

  • Earle LR, Warner BG, Aravena R (2003) Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano. Quat Res 59:2–11

    Article  Google Scholar 

  • Fritz C, Pancotto VA, Elzenga JTM, Visser EJ, Grootjans AP, Pol A, Iturraspe R, Roelofs JG, Smolders AJ (2011) Zero CH4 emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytol 190:398–408

    Article  PubMed  Google Scholar 

  • Gallego-Sala AV, Charman DJ, Brewer S et al (2018) Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat Clim Chang. https://doi.org/10.1038/s41558-018-0271-1

    Article  Google Scholar 

  • Gatis N, Luscombe DJ, Grand-Clement E, Hartley IP, Anderson K, Smith D, Brazier RE (2016) The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea-dominated peatland. Ecohydrology 9:407–420

    Article  CAS  Google Scholar 

  • Green SM, Baird AJ, Holden J, Reed D, Birch K, Jones P (2017) An experimental study on the response of blanket bog vegetation and water tables to ditch blocking. Wetl Ecol Manag 25:703–716

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537

    Article  CAS  PubMed  Google Scholar 

  • Hartman BD, Bookhagen B, Chadwick OA (2016) The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems. Restor Ecol 24:761–772

    Article  Google Scholar 

  • Heskel MA, Atkin OK, Turnbull MH, Griffin KL (2013) Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4(8):98

    Article  Google Scholar 

  • Hribljan JA, Cooper DJ, Sueltenfuss J, Wolf E, Heckman K, Lilliskov EA, Chimner RA (2015) Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires Peat 15:1–14

    Google Scholar 

  • Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127

    Article  CAS  Google Scholar 

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311

    Article  CAS  Google Scholar 

  • Jaatinen K, Laiho R, Vuorenmaa A, Del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–353

    Article  CAS  PubMed  Google Scholar 

  • Josse C, Cuesta F, Navarro G, Barrena V, Becerra MT, Cabrera E, Chacón-Moreno E, Ferreira W, Peralvo M, Saito J, Tovar A (2011) Physical geography and ecosystems in the tropical Andes. In: Herzog SK, Martinez R, Jorgensen PM, Tiessen H eds, Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research, Brazil, pp. 152–169

  • Laine AM, Mehtätalo L, Tolvanen A, Frolking S, Tuittila E-S (2019) Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. Sci Total Environ 647:169–181

    Article  CAS  PubMed  Google Scholar 

  • Law BE, Falge E, Gu LV, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Luan J, Liu S, Wu J, Wang M, Yu Z (2018) The transient shift of driving environmental factors of CO2 and CH4 fluxes in Tibetan peatlands before and after hydrological restoration. Agric For Meteorol 250–251:138–146

    Article  Google Scholar 

  • Makiranta P, Laiho R, Fritze H, Hytonen J, Laine J, Minkkinen K (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703

    Article  CAS  Google Scholar 

  • Millones J (1982) Patterns of land use and associated environmental problems of the central Andes: an integrated summary. Mt Res Dev 2:49–61

    Article  Google Scholar 

  • Munir T, Perkins M, Kaing E, Strack M (2014) Carbon dioxide flux and net primary production of a boreal treed bog: responses to warming and water table manipulations. Biogeosci Discuss 11:12937–12983

    Article  Google Scholar 

  • Oechel W, Vourlitis GL, Hastings SJ, Ault RP Jr, Bryant P (1998) The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Glob Chang Biol 4:77–90

    Article  Google Scholar 

  • Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S (2009) Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12:888–905

    Article  CAS  Google Scholar 

  • Patterson L, Cooper DJ (2007) The use of hydrologic and ecological indicators for the restoration of drainage ditches and water diversions in a mountain fen, Cascade Range, California. Wetlands 27:290–304

    Article  Google Scholar 

  • Preston D, Fairbairn J, Paniagua N, Maas G, Yevara M, Beck S (2003) Grazing and environmental change on the Tarija Altiplano, Bolivia. Mt Res Dev 23:141–148

    Article  Google Scholar 

  • Riutta T, Laine J, Tuittila E-S (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • Salvador F, Monerris J, Rochefort L (2014) Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance. Mires Peat 15:1–17

    Google Scholar 

  • Samaniego P, Monzier M, Robin C, Hall ML (1998) Late Holocene eruptive activity at Nevado Cayambe volcano, Ecuador. Bull Volcanol 59:451–459

    Article  Google Scholar 

  • Sanchez M, Chimner RA, Hribljan J, Lilleskov EA, Suárez E (2017) CO2 and CH4 fluxes in grazed and undisturbed mountain peatlands in the Ecuadorian Andes. Mires Peat 19:1–18

    Google Scholar 

  • Schimelpfenig DW, Cooper DJ, Chimner RA (2014) Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor Ecol 22:257–265

    Article  Google Scholar 

  • Schütz H, Seiler W, Conrad R (1990) Influence of soil temperature on CH4 emission from rice paddy fields. Biogeochemistry 11:77–95

    Article  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on CH4 emissions from two Michigan peatlands. Biogeochemistry 27:35–60

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlhom U et al (2010) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228

    Article  Google Scholar 

  • Strack M, Waddington JM, Rochefort L, Tuittila E-S (2006) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res 111:G02006

    Article  CAS  Google Scholar 

  • Strack M, Keith AM, Xu B (2014) Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecol Eng 64:231–239

    Article  Google Scholar 

  • Strack M, Cagampan J, Fard GH (2016) Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from highly drained and natural sites? Mires Peat 17:1–18

    Google Scholar 

  • Troll C (1968) The Cordilleras of the Tropical Americas. Aspects of climate, phytogeographical and agrarian ecology. In: Troll C (ed) Geo-ecology of the mountainous regions of the Tropical Americas. Ferd. Dummlers, Bonn, pp 15–56

    Google Scholar 

  • Turetsky MR (2002) Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:1526

    Article  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D (2014) A synthesis of CH4 emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  PubMed  Google Scholar 

  • Vasander H, Kettunen A (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin

    Google Scholar 

  • Whiting J, Bartlett S, Fan S, Bakwin P, Wofsy Steven C (1992) Biosphere/atmosphere CO2 exchange in tundra ecosystems: community characteristics and relationships with multispectral surface reflectance. J Geophys Res 97:16671–16680

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) and SilvaCarbon program. We thank the staff at the Huascarán National Park (Permit No PNH-008-2012, RJ No. 11-2015-SERNANP PHN and RJ No. 13-2017-SERNANP-JEF from Servicio Nacional de Áreas Naturales Protegidas por el Estado) for all their support. We also thank the field crews for helping us collect data and Mauricio Nunez Oporto for drone imagery.

Funding

No external grant funding was used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Planas-Clarke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planas-Clarke, A.M., Chimner, R.A., Hribljan, J.A. et al. The effect of water table levels and short-term ditch restoration on mountain peatland carbon cycling in the Cordillera Blanca, Peru. Wetlands Ecol Manage 28, 51–69 (2020). https://doi.org/10.1007/s11273-019-09694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-019-09694-z

Keywords

  • Bofedales
  • Carbon cycling
  • Carbon dioxide
  • Methane
  • Andes
  • Cushion peatlands
  • Ditch blocking
  • Light compensation point