Pond construction for threatened amphibians is an important conservation tool, even in landscapes with extant natural water bodies

Abstract

Ponds—small, isolated freshwater bodies—have vanished in large numbers during the last decades. Despite such great loss, the number of natural small water bodies has still remained quite high in Estonia. Nevertheless, many pond-related species, including amphibians such as the northern crested newt Triturus cristatus and the common spadefoot toad Pelobates fuscus—are in decline in Estonia, suggesting that the conditions of extant natural ponds might not be optimal. However, these conditions have never been examined. To halt the decline of these two pond-breeding species, more than 400 ponds have been constructed or restored from 2004 to 2014 in Estonia. In this study we compared 85 natural and 85 constructed ponds (which were created or restored especially for T. cristatus and/or P. fuscus) to find out: (i) what the main differences are between natural ponds and ponds specially created for threatened species; (ii) whether natural ponds provide breeding conditions for local amphibians; (iii) given the decline of T. cristatus and P. fuscus, what are the characteristics lacking in natural ponds, due to which they are not providing quality breeding habitats for these species. Whereas the constructed ponds were located in open habitats with mineral soils, the natural ponds were mainly in mires and forests, being thus more shaded. Amphibian diversity was higher in the constructed ponds and was positively related to the depth of the pond, the clarity of the water, the presence of slanting slopes, the absence of fish and the presence of nearby fields. T. cristatus preferred constructed ponds for reproduction, while the breeding site selection of P. fuscus was determined mainly by terrestrial habitat characteristics. Importantly, when the threatened species were removed from the sample, the diversity of common amphibians did not differ between natural and constructed ponds, suggesting that in our study sites natural water bodies act still as breeding sites for common species, but not for threatened ones. We conclude that pond construction is an important tool to halt the decline of threatened species, even in landscapes where natural ponds are still preserved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adrados L, Rannap R, Briggs L (2010) Field guide of amphibians in Estonia. University of Tartu, Tallinn (in Estonian)

    Google Scholar 

  2. Beebee TJC (1977) Habitats of the British Amphibians (1): chalk uplands. Biol Conserv 12:279–293

    Article  Google Scholar 

  3. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  4. Beja P, Alcazar R (2003) Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biol Conserv 114:317–326

    Article  Google Scholar 

  5. Biggs L, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3–39

    Article  Google Scholar 

  6. Brönmark C, Hansson LA (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–307

    Article  CAS  Google Scholar 

  7. Brönmark C, Hansson LA (2005) The biology of lakes and ponds. Oxford University Press, Oxford

    Google Scholar 

  8. Brown DJ, Street GM, Nairn RW, Forstner MRJ (2012) A place to call home: amphibian use of created and restored wetlands. Int J Ecol. https://doi.org/10.1155/2012/98987

    Article  Google Scholar 

  9. Bubíková K, Hrivnák R (2018) Comparative macrophyte diversity of waterbodies in the central European landscape. Wetlands 38:451–459

    Article  Google Scholar 

  10. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioural ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 64:23–35

    Article  Google Scholar 

  11. Calhoun AJK, Walls TE, Stockwell SS, McCollough M (2003) Evaluating vernal pools as a basis for conservation strategies: a Maine case study. Wetlands 23:70–81

    Article  Google Scholar 

  12. Caramujo MJ, Boavida MJ (2010) Biological diversity of copepods and cladocerans in Mediterranean temporary ponds under periods of contrasting rainfall. J Limnol 69:64–75

    Article  Google Scholar 

  13. Carisio L, Sacchi R, Seglie D, Sindaco R (2014) Habitat selection in a fossorial toad Pelobates fuscus insubricus (Amphibia: Pelobatidae): Does the soil affect species occurrence? Acta Herpetol 9:51–59

    Google Scholar 

  14. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597:1–6

    Article  Google Scholar 

  15. Chester ET, Robson BJ (2013) Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biol Conserv 166:64–75

    Article  Google Scholar 

  16. Cirovic R, Radovic D, Vukov TD (2008) Breeding site traits of European newts (Triturus macedonicus, Lissotriton vulgaris, and Mesotriton alpestris: Salamandridae) in the Montenegrin karst region. Arch Biol Sci 60:459–468

    Article  Google Scholar 

  17. Colburn EA, Weeks SC, Reed SK (2007) Diversity and Ecology of Vernal Pool Invertebrates. In: Calhoun AJK, DeMaynadier PG (eds) Science and conservation of vernal pools in Northeastern North America: ecology and conservation of seasonal wetlands in Northeastern North America. CRC Press, Boca Raton, pp 105–126

    Google Scholar 

  18. Curado N, Hartel T, Arntzen JW (2011) Amphibian pond loss as a function of landscape change—a case study over three decades in an agricultural area of northern France. Biol Conserv 144:1610–1618

    Article  Google Scholar 

  19. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  20. Dalbeck L, Janssen J, Völsgen SL (2014) Beavers (Castor fiber) increase habitat availability, heterogeneity and connectivity for common frogs (Rana temporaria). Amph Rept 35:321–329

    Article  Google Scholar 

  21. Davies BR, Biggs B, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in European agricultural landscapes. Agric Ecosyst Environ 125:1–8

    Article  Google Scholar 

  22. Denoël M (2012) Newt decline in Western Europe: highlights from relative distribution changes within guilds. Biodivers Conserv 21:2887–2898

    Article  Google Scholar 

  23. Denoël M, Ficetola GF (2008) Conservation of newt guilds in an agricultural landscape of Belgium: the importance of aquatic and terrestrial habitats. Aquat Conserv 18:714–728

    Article  Google Scholar 

  24. Denoël M, Perez A, Cornet Y, Ficetola GF (2013) Similar local and landscape processes affect both a common and a rare newt species. PLoS ONE 8:1–11

    Article  CAS  Google Scholar 

  25. Denton JS, Hitchings SP, Beebee TJC, Gent A (1997) A recovery program for the natterjack toad (Bufo calamita) in Britain. Conserv Biol 11:1329–1338

    Article  Google Scholar 

  26. Edgar P, Bird DR (2006) Action Plan for the Conservation of the Crested Newt Triturus cristatus Species Complex in Europe. Council of Europe, Strasbourg

    Google Scholar 

  27. Eggert C (2002) Use of fluorescent pigments and implantable transmitters to track a fossorial toad (Pelobates fuscus). Herpetol J 12:69–74

    Google Scholar 

  28. Eggert C, Guyétant R (1999) Age structure of a spadefoot toad Pelobates fuscus (Pelobatidae) population. Copeia 4:1127–1130

    Article  Google Scholar 

  29. Eggert C, Cogalniceanu D, Veith M, Dzukic G, Taberlet P (2006) The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status. Conserv Genet 7:185–195

    Article  Google Scholar 

  30. Elmberg J (1993) Threats to boreal frogs. Ambio 4:254–255

    Google Scholar 

  31. Estonian nature information database, https://infoleht.keskkonnainfo.ee/. Accessed 1 Sep 2018

  32. EU Habitats Directive 92/43/EEC, Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992L0043. Accessed 1 Sep 2018

  33. Ficetola GF, Rondinini C, Bonardi A, Baisero D, Padoa-Schioppa E (2015) Habitat availability for amphibians and extinction threat: a global analysis. Divers Distrib 21:302–311

    Article  Google Scholar 

  34. Gustafson DH, Pettersson CJ, Malmgren JC (2006) Great crested newts (Triturus cristatus) as indicators of aquatic plant diversity. Herpetol J 16:347–352

    Google Scholar 

  35. Gustafson DH, Malmgren JC, Mikusinski G (2011) Terrestrial habitat predicts use of aquatic habitat for breeding purposes—a study on the great crested newt (Triturus cristatus). Ann Zool Fenn 48:295–307

    Article  Google Scholar 

  36. Hartel T, Nemes S, Cogălniceanu D, Öllerer K, Schweiger O, Moga CI, Demeter L (2007) The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583:173–182

    Article  Google Scholar 

  37. Harthun M (1999) Der Einfluss des Bibers (Castor fiber albicus) auf die Fauna (Odonata, Mollusca, Trichoptera, Ephemeroptera, Diptera) von Mittelgebirgsbächen in Hessen (Deutschland). Limnologica 29:449–464

    Article  Google Scholar 

  38. Hazell D, Hero J, Lindenmayer D, Cunningham R (2004) A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biol Conserv 119:61–71

    Article  Google Scholar 

  39. Heath DJ, Whitehead A (1992) A survey of pond loss in Essex, South-East England. Aquat Conserv 2:267–273

    Article  Google Scholar 

  40. Hels T (2002) Population dynamics in a Danish metapopulation of spadefoot toads Pelobates fuscus. Ecography 25:303–313

    Article  Google Scholar 

  41. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  42. Hull A (1997) The Pond Life Project: a model of conservation and sustainability. In: Boothby J (ed) British Pond Landscape, Proceedings of the UK Conference of the Pond Life Project. Liverpool, pp 101–109

  43. Ildos AA, Ancona N (1994) Analysis of amphibian habitat preferences in a farmland area (Po plain, northern Italy). Amph Rept 15:307–316

    Article  Google Scholar 

  44. IUCN 2009 Red list of threatened species: http://www.iucnredlist.org/. Accessed 1 Sep 2018

  45. Jehle R, Arntzen JW (2000) Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements. J Zool 251:297–306

    Article  Google Scholar 

  46. Joly P, Miaud C, Lehmann A, Grolet O (2001) Habitat matrix effect on pond occupancy in newts. Conserv Biol 15:239–248

    Article  Google Scholar 

  47. Kauri H (1947) Die Verbreitung der Amphibien und Reptilen in Estland. Scripta Societatis Litterarum Esthonicae in Suecia, Ser. A. Stockholm

  48. Laurila A (1998) Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21:484–494

    Article  Google Scholar 

  49. Lemmens P, Mergeay J, De Bie T, Van Wichelen J, De Meester L, Declerck SAJ (2013) How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS ONE 8:e72538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Sanz C, Cenzano CSS, Fernández-Aláez M, Garcia-Criado F (2012) Relative contribution of small mountain ponds to regional richness of littoral macroinvertebrates and the implications for conservation. Aquat Conserv 22:155–164

    Article  Google Scholar 

  51. Mazerolle MJ, Poulin M, Lavoie C, Rochefort L, Desrochers A, Drolet B (2006) Animal and vegetation patterns in natural and man-made bog pools: implications for restoration. Freshw Biol 51:333–350

    Article  Google Scholar 

  52. McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  53. Miaud C (1994) Role of wrapping behavior on egg survival in three species of Triturus (Amphibia: Urodela). Copeia 2:535–537

    Article  Google Scholar 

  54. Miaud C (1995) Oviposition site selection in three species of European newts (Salamandridae) genus Triturus. Amph Rept 16:265–272

    Article  Google Scholar 

  55. Miró A, O’Brien D, Hall J, Jehle R (2017) Habitat requirements and conservation needs of peripheral populations: the case of the great crested newt (Triturus cristatus) in the Scottish Highlands. Hydrobiologia 792:169–181

    Article  Google Scholar 

  56. Morand A, Joly P (1995) Habitat variability and space utilization by the amphibian communities of the French Upper-Rhone floodplain. Hydrobiologia 300(301):249–257

    Article  Google Scholar 

  57. Nielsen SM, Dige T (1995) A one season study of the common spadefoot, Pelobates fuscus. Memoranda Soc Fauna Flora Fennica 71:106–108

    Google Scholar 

  58. Nöllert A (1990) Die Knoblauchkröte Pelobates fuscus. Die Neue Brehm Bücherei, Wittenberg Lutherstadt

    Google Scholar 

  59. Nyström P, Birkedal L, Dahlberg C, Brönmark C (2002) The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography 25:488–498

    Article  Google Scholar 

  60. Nyström P, Hansson J, Månsson J, Sundstedt M, Reslow C, Broström A (2007) A documented amphibian decline over 40 years: possible causes and implications for species recovery. Biol Conserv 138:399–411

    Article  Google Scholar 

  61. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  62. Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne JB (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv 15:535–540

    Article  Google Scholar 

  63. Péntek AL, CsabaFV Zsuga K, Horváth Z (2017) Metacommunity dynamics of amphibians in years with differing rainfall. Aquat Ecol 51:45–57

    Article  Google Scholar 

  64. Per Sjögren-Gulve (1994) Distribution and extinction patterns within a Northern metapopulation of the pool frog, Rana lessonae. Ecology 75:1357–1367

    Article  Google Scholar 

  65. Petranka JW, Holbrook CT (2006) Wetland restoration for amphibians: should local sites be designed to support metapopulations or patchy populations? Restor Ecol 14:404–411

    Article  Google Scholar 

  66. Petranka JW, Harp EM, Holbrook CT, Hamel JA (2007) Long-term persistence of amphibian populations in a restored wetland complex. Biol Conserv 138:371–380

    Article  Google Scholar 

  67. Piha H, Louto M, Merila J (2007) Amphibian occurrence is influenced by current and historic landscape characteristics. Ecol Appl 17:2298–2309

    Article  PubMed  Google Scholar 

  68. Porej D, Hetherington TE (2005) Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring of amphibian communities. Wetl Ecol Manag 13:445–455

    Article  Google Scholar 

  69. Preisser EL, Kefer JY, Lawrence JD, Clark TW (2000) Vernal pool conservation in Connecticut: an assessment and recommendations. Environ Manage 26:503–513

    Article  CAS  PubMed  Google Scholar 

  70. Rannap R, Lõhmus A, Jakobson K (2007) Consequences of coastal meadow degradation: the case of the natterjack toad (Bufo calamita) in Estonia. Wetlands 27:390–398

    Article  Google Scholar 

  71. Rannap R, Lõhmus A, Briggs L (2009a) Restoring ponds for amphibians: a success story. Hydrobiologia 634:87–95

    Article  Google Scholar 

  72. Rannap R, Lõhmus A, Briggs L (2009b) Niche position, but not niche breadth, differs in two coexisting amphibians having contrasting trends in Europe. Divers Distrib 15:692–700

    Article  Google Scholar 

  73. Rannap R, Lõhmus A, Linnamägi M (2012) Geographic variation in habitat requirements of two coexisting newt species in Europe. Acta Zool Acad Sci H 58:69–86

    Google Scholar 

  74. Rannap R, Markus M, Kaart T (2013) Habitat use of the common spadefoot toad (Pelobates fuscus) in Estonia. Amph Rept 34:51–62

    Article  Google Scholar 

  75. Rannap R, Kaart T, Iversen LL, Briggs L, Vries W (2015) Geographically varying habitat characteristics of a wide-ranging amphibian, the common spadefoot toad (Pelobates fuscus), in Northern Europe. Herpetol Conserv Biol 10:904–916

    Google Scholar 

  76. Red Data Book of Estonia 2008. Commission for Nature Conservation of the Estonian Academy of Sciences. http://www.envir.ee/sites/default/files/elfinder/article_files/eesti_punane_raamat_2008.pdf. Accessed 1 Sep 2018

  77. Remm L, Lõhmus A, Rannap R (2015) Temporary and small water bodies in human-impacted forests: an assessment in Estonia. Boreal Environ Res 20:603–619

    Google Scholar 

  78. Remm L, Vaikre M, Rannap R, Kohv M (2018) Amphibians in drained forest landscapes: conservation opportunities for commercial forests and protected sites. For Ecol Manag 428:87–92

    Article  Google Scholar 

  79. Reshetnikov AN (2003) The introduced fish, rotan (Perccottus glenii), depresses populations of aquatic animals (macroinvertebrates, amphibians, and a fish). Hydrobiologia 510:83–90

    Article  Google Scholar 

  80. Rhazi L, Grillas P, Saber ER, Rhazi M, Brendonck L, Waterkeyn A (2012) Vegetation of Mediterranean temporary pools: a fading jewel? Hydrobiologia 689:23–36

    Article  Google Scholar 

  81. Rooma I, Voiman V (2002) Estonian soils. Estonian Encyclopedia, 11, Tallinn (in Estonian)

  82. Rothermel BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14:1535–1546

    Article  Google Scholar 

  83. Schmidt BR, Van Buskirk J (2001) Verhalten, Wachstum und Morphologie von Kammolch-Larven in der An- und Abwesenheit von Libellenlarven. RANA Sonderheft 4:179–191

    Google Scholar 

  84. Semlitsch RD (2000) Principles for management of aquatic-breeding amphibians. J Wildl Manag 64:615–631

    Article  Google Scholar 

  85. Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic-breeding amphibians. Conserv Biol 16:619–629

    Article  Google Scholar 

  86. Semlitsch RD, Bodie JR (1998) Are small, isolated wetlands expendable? Conserv Biol 12:1129–1133

    Article  Google Scholar 

  87. Skei JK, Dolmen D, Rønning L, Ringsby TH (2006) Habitat use during the aquatic phase of the newts Triturus vulgaris (L.) and T. cristatus (Laurenti) in central Norway: proposition for a conservation and monitoring area. Amph Rept 27:309–324

    Article  Google Scholar 

  88. Soomets E, Rannap R, Lõhmus A (2016) Patterns of assemblage structure indicate a broader conservation potential of focal amphibians for pond management. PLoS ONE 11:e0160012. https://doi.org/10.1371/journal.pone.0160012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Soomets E, Lõhmus A, Rannap R (2017) Brushwood removal from ditch banks attracts breeding frogs in drained forests. For Ecol Manage 384:1–5

    Article  Google Scholar 

  90. Stevens CE, Paszkowski CA, Scrimgeour GJ (2006) Older is better: beaver ponds on Boreal streams as breeding habitat for the wood frog. J Wildl Manag 70:1360–1371

    Article  Google Scholar 

  91. Suislepp K, Rannap R, Lõhmus A (2011) Impacts of artificial drainage on amphibian breeding sites in hemiboreal forests. For Ecol Manage 262:1078–1083

    Article  Google Scholar 

  92. Székely D, Cogălniceanu D, Székely P, Denoël M (2017) Out of the ground: two coexisting fossorial toad species differ in their emergence and movement patterns. Zoology 121:49–55

    Article  PubMed  Google Scholar 

  93. Sztatecsny M, Jehle R, Schmidt B, Arntzen JW (2004) The abundance of premetamorphic newts (Triturus cristatus, T. marmoratus) as a function of habitat determinants: an a priori model selection approach. Herpetol J 14:89–97

    Google Scholar 

  94. Tiberti R, Bogliani G, Brighenti S, Iacobuzio R, Liautaud K, Rolla M, von Hardenberg A, Bassano B (2018) Recovery of high mountain Alpine lakes after the eradication of introduced brook trout Salvelinus fontinalis using non-chemical methods. Biol Invasions. https://doi.org/10.1007/s10530-018-1867-0

    Article  Google Scholar 

  95. Vaikre M, Remm L, Rannap R, Voode M (2018) Functional assemblages of macroinvertebrates in pools and ditches in drained forest landscape. Wetlands 38:957–964

    Article  Google Scholar 

  96. Van Dyke F, Berthel A, Harju SM, Lamb RL, Thompson D, Ryan J, Pyne E, Dreyer G (2017) Amphibians in forest pools: does habitat clustering affect community diversity and dynamics? Ecosphere 8:e01671. https://doi.org/10.1002/ecs2.1671

    Article  Google Scholar 

  97. Vojar J, Doležalová J, Solský M, Smolová D, Kopecký O, Kadlec T, Knapp M (2016) Spontaneous succession on spoil banks supports amphibian diversity and abundance. Ecol Eng 90:278–284

    Article  Google Scholar 

  98. Vuorio V, Heikkinen RK, Tikkanen O-P (2013) Breeding success of the threatened great crested newt in boreal forest ponds. Ann Zool Fenn 50:158–169

    Article  Google Scholar 

  99. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  100. Wood PJ, Greenwood MT, Agnew MD (2003) Pond biodiversity and habitat loss in the UK. Area 35:206–216

    Article  Google Scholar 

  101. Zero VH, Murphy MA (2016) An amphibian species of concern prefers breeding in active beaver ponds. Ecosphere 7:e01330. https://doi.org/10.1002/ecs2.1330

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Soomets, L. Remm, T. Kaasiku for help in the field, A. Lõhmus for constructive comments to the analysis and Sonya Thayer for language correction.

Funding

The study was financially supported by the Estonian Research Council (grants no IUT 34-7, 9051, PRG314, PUT1363) and EU LIFE + project LIFE08NAT/EE/000257(DRAGONLIFE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riin Magnus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

See Tables 8, 9, 10.

Table 8 Redundancy of the ecological variables, which attained p ≤ 0.15 for amphibian diversity in univariate analyses (see Table 1 for acronyms)
Table 9 Redundancy of the ecological variables, which attained p ≤ 0.15 for P. fuscus in univariate analyses (see Table 1 for acronyms)
Table 10 Redundancy of the ecological variables, which attained p ≤ 0.15 for T. cristatus in univariate analyses (see Table 1 for acronyms)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magnus, R., Rannap, R. Pond construction for threatened amphibians is an important conservation tool, even in landscapes with extant natural water bodies. Wetlands Ecol Manage 27, 323–341 (2019). https://doi.org/10.1007/s11273-019-09662-7

Download citation

Keywords

  • Amphibian diversity
  • Breeding pond selection
  • Breeding pond characteristics
  • Estonia
  • Pelobates fuscus
  • Triturus cristatus