Geobotany in a fault in the world’s largest continuous wetland in central South America

Abstract

The Pantanal is located in the center of South America in a tectonically active sedimentary basin of Quaternary age. Even though the relief is flat and the diversity of the sediments is low, its vegetation cover has high variability resulting from seasonal fluctuations in water levels and the presence of four surrounding biomes. Changes in elevation of less than 1 m influence the length and intensity of floods, powerfully affecting the vegetation. Faults with small vertical displacement can generate abrupt vegetation changes and, consequently, expressive vegetation lineaments. This study characterizes a lineament in the northern Pantanal, considering Land Surface Phenology, estimates of precipitation, and floristic survey. The phenological metrics, obtained from a 15-year time series from the Moderate Resolution Imaging Spectroradiometer processed by TIMESAT software, discriminate evergreen forests in the NW of this lineament from savanna-like physiognomies in the SE region. Plant taxonomic identification shows two distinct regional strata with a clear separation between species adapted to prolonged floods in the NW and typical species of the Cerrado biome, mostly xeromorphic, in the SE. Data from the Tropical Rainfall Measuring Mission complemented the analysis, showing different dependence on local rains on different sides of the lineament. The entire dataset defines this geological structure as a driver of the Pantanal’s plant communities, being a boundary for the extensive establishment of propagules of the Amazon biome. This research, in addition to advancing knowledge of this singular region, which is essential for management studies, can be a stimulus to biological and forest investigations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alho CJR (2008) Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Braz J Biol 68:957–966

    Article  PubMed  CAS  Google Scholar 

  2. Alho CJR (2011) Biodiversity of the Pantanal: its magnitude, human occupation, environmental threats and challenges for conservation. Braz J Biol 71:229–232

    Article  PubMed  CAS  Google Scholar 

  3. Almeida TIR, Penatti NC, Ferreira LG, Arantes AE, Amaral CH (2015) Principal component analysis applied to a time series of MODIS images: the spatio-temporal variability of the Pantanal wetland, Brazil. Wetl Ecol Man 23:737–748

    Article  Google Scholar 

  4. Assine ML, Soares PC (2004) Quaternary of the Pantanal, west-central Brazil. Quat Int 114:23–34

    Article  Google Scholar 

  5. Assine ML, Merino ER, Pupim FN, Warren LV, Guerreiro RL, McGlue MM (2015) Geology and geomorphology of the Pantanal basin. In: Bergier I, Assine ML (eds) Dynamics of the Pantanal wetland in South America. Springer, Basel, pp 23–50

    Google Scholar 

  6. Assine ML, Macedo HA, Stevaux JC, Bergier I, Padovani CR, Silva A (2016) Avulsive rivers in the hydrology of the Pantanal wetland. In: Bergier I, Assine ML (eds) Dynamics of the Pantanal wetland in South America. Springer, Basel, pp 83–110

    Google Scholar 

  7. Barbier EB (1994) Valuing environmental functions: tropical wetlands. Land Econ 70:155–173

    Article  Google Scholar 

  8. Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509

    Article  Google Scholar 

  9. Collischonn B, Allasia D, Collischonn W, Tucci CEM (2011) Desempenho do satélite TRMM na estimativa de precipitação sobre a bacia do Paraguai superior. Rev Bras Cart 59:93–99

    Google Scholar 

  10. Conservation International (2009) Monitoring alterations in vegetation cover and land use in the upper Paraguay River basin, Brazilian portion. Conservation International, Brasília

    Google Scholar 

  11. Curto JB, Vidotti RM, Fuck RA, Blakely RJ, Alvarenga CJS, Dantas EL (2014) The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J Geophys Res 119:1544–1562

    Article  Google Scholar 

  12. Dias FLF, Assumpção M, Facincani EME, França GS, Assine ML, Paranhos Filho AC, Gamarra RM (2016) The 2009 earthquake, magnitude mb 4.8, in the Pantanal wetlands, west-central Brazil. An Acad Bras Ciênc 88:1253–1264

    Article  PubMed  Google Scholar 

  13. Eklund L, Jönsson P (2016) TIMESAT for processing time-series data from satellite sensors for land surface monitoring. In: Jarocińska A, van der Meer FD (eds) Multitemporal remote sensing. Springer, Cham, pp 177–194

    Google Scholar 

  14. Evans TL, Costa M, Tomas WM, Camilo AR (2014) Large-scale habitat mapping of the Brazilian Pantanal wetland: a synthetic aperture radar approach. Remote Sens Environ 155:89–108

    Article  Google Scholar 

  15. Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Phil Trans R Soc B 365:3101–3112

    Article  PubMed  Google Scholar 

  16. Fraser LH, Keddy PA (2005) The world’s largest wetlands: ecology and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  17. Ganguly S, Friedl MA, Tan B, Zhang X, Verma M (2010) Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens Environ 114:1805–1816

    Article  Google Scholar 

  18. Gondwe BR, Hong SH, Wdowinski S, Bauer-Gottwein P (2010) Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30:1–13

    Article  Google Scholar 

  19. Guo M, Li J, Sheng C, Xu J, Wu L (2017) A review of wetland remote sensing. Sensors 17:777

    Article  Google Scholar 

  20. Hamilton SK, Sippel SJ, Melack JM (1996) Inundation patterns in the Pantanal wetland of south America determined from passive microwave remote sensing. Arch Hydrobiol 137:1–23

    Google Scholar 

  21. Huete AR, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  22. Jamali S, Seaquist J, Ardö J, Eklundh L (2011). Investigating temporal relationships between rainfall, soil moisture and MODIS-derived NDVI and EVI for six sites in Africa. https://lup.lub.lu.se/search/ws/files/6245831/4195000.pdf. Accessed 12 Nov 2018

  23. Jönsson P, Eklund L (2004) TIMESAT—a program for analyzing time series of satellite sensor data. Comput Geosci 30:833–845

    Article  Google Scholar 

  24. Kent M, Coker P (1992) Vegetation description and analysis: a practical approach. Belhaven, London

    Google Scholar 

  25. Lang M, Awl J, Wilen B, McCarty G, Galbraith J (2009) Improved wetland mapping. Nat Wetl News 31:6–11

    Google Scholar 

  26. Leier AL, DeCelles PG, Pelletier JD (2005) Mountains, monsoons, and megafans. Geology 33:289–292

    Article  Google Scholar 

  27. Lumbierres M, Méndez PF, Bustamante J, Soriguer R, Santamaría L (2017) Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sens 9:392–451

    Article  Google Scholar 

  28. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  29. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Brix H (2013) Wetlands, carbon, and climate change. Lands Ecol 28:583–597

    Article  Google Scholar 

  30. Nunes da Cunha C, Junk WJ, Leitão-Filho HF (2007) Woody vegetation in the Pantanal of Mato Grosso, Brazil: a preliminary typology. Amazoniana 19:159–184

    Google Scholar 

  31. O’Loughlin FE, Paiva RCD, Durand M, Alsdorf DE, Bates PD (2016) A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sens Environ 182:49–59

    Article  Google Scholar 

  32. Padovani CR (2010) Dinâmica espaço-temporal das inundações do Pantanal. Dissertation, University of São Paulo

  33. Penatti NC, Almeida TIR (2013) Subdivision of Pantanal quaternary wetlands: MODIS NDVI timeseries in the indirect detection of sediments granulometry. ISPRS 1:311–316

    Google Scholar 

  34. Penatti NC, Almeida TIR, Ferreira LG, Arantes AE, Coe MT (2015) Satellite-based hydrological dynamics of the world’s largest continuous wetland. Rem Sens Env 170:1-13

    Article  Google Scholar 

  35. Pott A, Silva J (2015) Terrestrial and aquatic vegetation diversity of the Pantanal wetland. In: Bergier I, Assine ML (eds) Dynamics of the Pantanal wetland in South America. Springer, Basel, pp 111–132

    Google Scholar 

  36. Pott A, Oliveira AKM, Damasceno-Junior GA, Silva JSV (2011) Plant diversity of the Pantanal wetland. Braz J Biol 71:265–273

    Article  PubMed  CAS  Google Scholar 

  37. Reed BC (2006) Trend analysis of time-series phenology of North America derived from satellite data. Gisci Remote Sens 43:1–15

    Article  Google Scholar 

  38. Ribeiro EF (2016) Lineamento regional no norte do Pantanal separando áreas de vegetação fenológica e floristicamente distintas: evidências de diversidade ambiental originada por neotectônica. Dissertation, University of São Paulo

  39. Saleska SR, Didan K, Huete AR, Da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612–612

    Article  PubMed  CAS  Google Scholar 

  40. Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  41. Silva JSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. Pesq Agropec Bras 33:1703–1711

    Google Scholar 

  42. Soares PC, Assine ML, Rabelo L (1998) The Pantanal Basin: recent tectonics, relationships to the Transbrasiliano Lineament. http://marte.sid.inpe.br/col/sid.inpe.br/deise/1999/02.08.10.23/doc/1_141o.pdf. Accessed 07 Oct 2017

  43. Souza HJ, Delabie JHC (2016) ‘Murundus’ structures in the semi-arid region of Brazil: testing their geographical congruence with mound-building termites (Blattodea: Termitoidea: Termitidae). Ann Soc Entomol Fr 52:369–385

    Article  Google Scholar 

  44. Tan B, Morisette JT, Wolfe RE, Gao F, Ederer GA, Nightingale J, Pedelty JA (2011) A enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE J Sel Topics Appl Earth Obs Remote Sens 4:361–371

    Article  Google Scholar 

  45. Townshend JR, Goff TE, Tucker CJ (1985) Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Trans Geosci Remote Sens 23:888–895

    Article  Google Scholar 

  46. Turner RK, Van Den Bergh JC, Söderqvist T, Barendregt A, Van Der Straaten J, Maltby E, Van Ierland EC (2000) Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecol Econ 35:7–23

    Article  Google Scholar 

  47. Ussami N, Shiraiwa S, Dominguez JML (1999) Basement reactivation in a sub-Andean foreland flexural bulge: the Pantanal wetland, SW Brazil. Tectonics 18:25–39

    Article  Google Scholar 

  48. Viña A, Tuanmu MN, Xu W, Li Y, Qi J, Ouyang Z, Liu J (2012) Relationship between floristic similarity and vegetated land surface phenology: implications for the synoptic monitoring of species diversity at broad geographic regions. Remote Sens Environ 121:488–496

    Article  Google Scholar 

  49. Wessels K, Steenkamp K, Von Maltitz G, Archibald S (2011) Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa. Appl Veg Sci 14:49–66

    Article  Google Scholar 

  50. Williams WT, Lamber JT (1966) Multivariate methods in plant ecology: V. Similarity analyses and information-analysis. J Ecol 54:427–445

    Article  Google Scholar 

  51. Woodward RT, Wui YS (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37:257–270

    Article  Google Scholar 

  52. Xiao X, Hagen S, Zhang Q, Keller M, Moore B III (2006) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens Environ 103:465–473

    Article  Google Scholar 

  53. Zhang X, Friedl MA, Tan B, Goldberg MD, Yu Y (2012) Long-term detection of global vegetation phenology from satellite instruments. In: Phenology and climate change

Download references

Acknowledgements

The authors would like to thank Angelina Barros Baruki and Sérgio Baruki, owners of the Recreio farm, not only for their gracious welcome to the team, but also for the support given in the infrastructure for displacements in the entire region. Without such support, it would have been impossible to carry out the fieldwork. Teodoro Isnard Ribeiro de Almeida thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Productivity Grant, Process 302925/2015, which funded most of the field campaign.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teodoro Isnard Ribeiro de Almeida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Almeida, T.I.R., do Amaral, C.H., Botelho, M. et al. Geobotany in a fault in the world’s largest continuous wetland in central South America. Wetlands Ecol Manage 27, 171–185 (2019). https://doi.org/10.1007/s11273-018-9650-7

Download citation

Keywords

  • Pantanal
  • Vegetation lineament
  • Geobotany
  • Multitemporal remote sensing
  • Neotectonics