Skip to main content
Log in

Characterization of benthic habitat settings in a lagoonal ecosystem using free-living nematodes as proxy

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Free-living nematodes are sensitive to most of the disturbances and therefore have ability to reflect direct structural and functional changes in an ecosystem. We studied nematode assemblages of Chilika Lagoon, the largest lagoon of Asia, across spatio-temporal scales in link with environmental variables and evaluated nematode assemblages as a proxy to characterize lagoonal benthic habitat settings. Our results revealed that nematode communities showed significant variation spatially and temporally in terms of mean density (16–854/10 cm2) and mean number of species (7–74). Salinity is the key factor that controls nematode community structure across this lagoon and was strongly supported by statistical analyses. The observed nematode assemblages were further used as a proxy to assign benthic habitats of Chilika into distinct biological, topographical and hydrological settings. This study showed that nematode assemblages could be effectively used for long term ecological monitoring of dynamic sedimentary environment of lagoons globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adão H, Alves AS, Patrício J, Neto JM, Costa MJ, Marques JC (2009) Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecol 35:287–300. doi:10.1016/j.actao.2008.11.007

    Article  Google Scholar 

  • Alves AS, Adão H, Ferrero TJ, Marques JC, Costa MJ, Patrício J (2013) Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecol Indic 24:462–475. doi:10.1016/j.ecolind.2012.07.013

    Article  Google Scholar 

  • Alves AS, Veríssiomo H, Costa MJ, Marques JC (2014) Taxonomic resolution and biological traits analysis (BTA) approaches in estuarine free-living nematodes. Estuar Coast Shelf Sci 138:69–78. doi:10.1016/j.ecss.2013.12.014

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Ansari KGMT, Manokaran S, Raja S, Lyla PS, Ajmal Khan S (2014) Interaction of free-living marine nematodes in the artificial mangrove environment (southeast coast of India). Environ Monit Assess 186:293–305. doi:10.1007/s10661-013-3374-1

    Article  PubMed  CAS  Google Scholar 

  • Ansari KGMT, Pattnaik AK, Rastogi G, Bhadury P (2015) An inventory of free-living marine nematodes from Asia’s largest coastal lagoon, Chilika, India. Wetlands Ecol Manage 23:881–890. doi:10.1007/s11273-015-9426-2

    Article  Google Scholar 

  • Ansari KGMT, Lyla PS, Ajmal Khan S, Bhadury P (2016) Diversity patterns of free-living marine nematodes in the southwest continental shelf of Bay of Bengal and their link to abiotic variables. Mar Ecol 37:631–644. doi:10.1111/maec.12332

    Article  Google Scholar 

  • Ansari KGMT, Lyla PS, Ajmal Khan S, Bhadury P (2017) Multiple spatial scale analysis provide an understanding of benthic macro-invertebrate community structure across a lagoonal ecosystem. Wetlands 37:277–287. doi:10.1007/s13157-016-0866-0

    Article  Google Scholar 

  • Armenteros M, Perez-Garcia JA, Perez-Angulo A, Williams JP (2008) Efficiency of extraction of meiofauna from sandy and muddy marine sediments. Rev Investiga Mar 29:113–118

  • Barik SK, Muduli PR, Mohanty B, Behara AT, Mallick S, Das A et al (2017). Spatio-temporal variability and the impact of Phailin on water quality of Chilika lagoon. Cont Shelf Res 136:39–56. doi:10.1016/j.csr.2017.01.019

  • Beyrem H, Boufahja F, Hedfi A, Essid N, Aïssa P, Mohmoudi E (2011) Laboratory study on individual and combined effects of Cobalt and Zinc-Spiked sediment on meiobenthic nematodes. Biol Trace Elem Res 144:790–803. doi:10.1007/s12011-011-9032-y

    Article  PubMed  CAS  Google Scholar 

  • Bhadury P, Austen MC (2010) Barcoding marine nematodes- an improved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia 641:245–251. doi:10.1007/s10750-009-0088-z

    Article  CAS  Google Scholar 

  • Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2008) Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Mar Biol 154:509–518. doi:10.1007/s00227-008-0945-8

    Article  Google Scholar 

  • Bianchelli S, Pusceddu A, Buschi E, Danovaro R (2016) Trpohic status and meiofauna biodiversity in the Northern Adriatic Sea: insights for the assessment of good environmental status. Mar Environ Res 113:18–30. doi:10.1016/j.marenvres.2015.10.010

    Article  PubMed  CAS  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution statistic package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248. doi:10.1002/esp.261

    Article  Google Scholar 

  • Boufahja F, Vitiello P, Aïssa P (2014) More than 35 years of studies on marine nematodes from Tunisia: a checklist of species and their distribution. Zootaxa 3786:269–300. doi:10.11646/zootaxa.3786.3.3

    Article  PubMed  Google Scholar 

  • Boufahja F, Semprucci F, Beyrem H, Bhadury P (2015) Marine nematode taxonomy in Africa: promising prospects against scarcity of information. J Nematol 47:198–206

    PubMed  PubMed Central  Google Scholar 

  • Buchanan JB (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell Scientific Publications, London, pp 41–65

    Google Scholar 

  • Carriço R, Zeppilli D, Quillien N, Grall J (2013) Can meiofauna be a good biological indicator of the impacts of eutrophication caused by green macroalgal blooms? Les cahiers naturalistes de l’Observatoire marin 2:9–16

    Google Scholar 

  • Cibic T, Franzo A, Celussi M, Fabbro C, Del Negro P (2012) Benthic ecosystem functioning in hydrocarbon and heavy-metal contaminated sediments of an Adriatic lagoon. Mar Ecol Prog Ser 458:69–87. doi:10.3354/meps09741

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Somerfield PJ, Airoldi L, Warwick RM (2006) Exploring interaction by second-stage community analysis. J Exp Mar Biol Ecol 338:179–192. doi:10.1016/j.jembe.2006.06.019

    Article  Google Scholar 

  • Colangelo MA, Ceccherelli UV (1994) Meiofaunal recolonization of azoic sediment in a Po Delta lagoon (Sacca di Goro). Boll Zool 61:335–342. doi:10.1080/11250009409355904

    Article  Google Scholar 

  • Cook AA, Lambshead PJD, Hawkins LE, Mitchell N, Levin LA (2000) Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep-Sea Res II 47:75–85. doi:10.1016/S0967-0645(99)00097-1

    Article  Google Scholar 

  • Coomans A (2002) Present status and future of nematode systematics. Nematology 5:573–582. doi:10.1163/15685410260438836

    Article  Google Scholar 

  • Coull BC, Palmer MA (1984) Field experimentation in meiofaunal ecology. Hydrobiologia 118:1–19. doi:10.1007/BF00031783

    Article  Google Scholar 

  • Da Rocha CMC, Venekey V, Bezerra TNC, Souza JRB (2006) Phytal marine nematode assemblages and their relation with the macrophytes structural complexity in a Brazilian tropical rocky beach. Hydrobiologia 553:219–230. doi:10.1007/s10750-005-0923-9

    Article  Google Scholar 

  • Danovaro R, Scopa M, Gambi C, Fraschetti S (2007) Tropic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol 152:339–350. doi:10.1007/s00227-007-0696-y

    Article  Google Scholar 

  • Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF (2014) Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29:511–520. doi:10.1016/j.tree.2014.07.003

    Article  PubMed  Google Scholar 

  • Elliott JM, Drake CM (1981) A comparative study of seven grabs for sampling benthic macrinvertebrates in rivers. Freshwat Biol 11:99–120

    Article  Google Scholar 

  • Fabbrocini A, Guarino A, Scirocco T, Franchi M, D’adamo R (2005) Integrated bio-monitoring assessment of the Lesina Lagoon (Southern Adriatic Coast, Italy): preliminary results. Chem Ecol 21:479–489. doi:10.1080/02757540500438623

    Article  CAS  Google Scholar 

  • Finch MS, Hydes DJ, Clayson CH, Weigl B, Dakin J, Gwilliam P (1998) A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trails. Anal Chim Acta 377:167–177. doi:10.1016/S0003-2670(98)00616-3

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR (2011) Experimental and genetic studies of meiofauna assess environmental quality and reveal mechanisms of pollution fate and effects. Vie Milieu 61:1–26

    Google Scholar 

  • Fonseca G, Maria TF, Kandratavicius N, Venekey V, Gheller PF, Galllucci F (2014) Testing for nematode-granulometry relationships. Mar Biodiv 44:435–442. doi:10.1007/s12526-014-0241-4

    Article  Google Scholar 

  • Frontalini F, Semprucci F, Coccioni R, Balsamo M, Bittoni P, Covazzi-Harriague A (2011) On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the central Adriatic Sea (Italy). Environ Monit Assess 180:325–344. doi:10.1007/s10661-010-1791-y

    Article  PubMed  Google Scholar 

  • Gambi C, Totti C, Manini E (2003) Impact of organic loads and environmental gradients on microphytobenthos and meiofaunal distribution in a coastal lagoon. Chem Ecol 19:207–223. doi:10.1080/0275754031000119951

    Article  CAS  Google Scholar 

  • Gambi C, Bianchelli S, Perez M, Invers O, Ruiz RM, Danovaro R (2009) Biodiversity response to experimental induced hypoxic-anoxic conditions in seagrass sediments. Biodivers Conserv 18:33–54. doi:10.1007/s10531-008-9433-1

    Article  Google Scholar 

  • Gaudette HE, Flight WR, Lois T, Folger DW (1974) An inexpensive titration method for determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253. doi:10.1306/74D729D7-2B21-11D7-8648000102C1865D

    Article  CAS  Google Scholar 

  • Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin. doi:10.1007/978-3-540-68661-3

  • Gordon AL, Claudia FG, Takahashi T, Sutherland S, Morrison J, Olson D (2002) Bay of Bengal nutrient-rich benthic layer. Deep-Sea Res II 49:1411–1421. doi:10.1016/S0967-0645(01)00161-8

    Article  CAS  Google Scholar 

  • Guerrini A, Colangelo MA, Ceccherelli UV (1998) Recolonization patterns of meiobenthic communities in the brackish vegetated and unvegetated habitats after induced hypoxia/anoxia. Hydrobiologia 375(376):73–87. doi:10.1023/A:1017096603808

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

    Article  PubMed  CAS  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23:399–489

    Google Scholar 

  • Hirpa FA, Hopson TM, De Groeve T, Brakenridge GR, Gebremichael M, Restrepo PJ (2013) Upstream satellite remote sensing for river discharge forecasting: application to major rivers in South Asia. Remote Sens Environ 131:140–151. doi:10.1016/j.rse.2012.11.013

    Article  Google Scholar 

  • Ittekkot V, Nair RR, Honjo S, Ramaswamy V, Bartsch M, Manganini S, Desai BN (1991) Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water. Nature 351:385–387. doi:10.1038/351385a0

    Article  Google Scholar 

  • Jensen P (1984) Ecology of benthic and epiphytic nematodes in brackish waters. Hydrobiologia 108:201–217. doi:10.1007/BF00006329

    Article  Google Scholar 

  • Jeong KS, Kim DK, Pattnaik A, Bhatta K, Bhandari B, Joo GJ (2008) Patterning limnological characteristics of the Chilika lagoon (India) using a self-organizing map. Limnology 9:231–242. doi:10.1007/s10201-008-0243-7

    Article  CAS  Google Scholar 

  • Jouili S, Essid N, Semprucci F, Boufahja F (2017) Environmental quality assessment of El Bibane lagoon (Tunisia) using taxonomic and functional diversity of meiofauna and nematodes. J Mar Biol Assoc UK. doi:10.1017/S0025315416000990

    Article  Google Scholar 

  • Khan SA, Ansari KGMT, Lyla PS (2012) Organic matter content of sediments in continental shelf area of southeast coast of India. Environ Monit Assess 184:7247–7256. doi:10.1007/s10661-011-2494-8

    Article  PubMed  Google Scholar 

  • Lambshead PJD (2004) Marine nematode biodiversity. In: Chen ZX, Chen Y, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. Nematode morphology, physiology and ecology. CABI Publishing, Wallingford, pp 436–467

    Google Scholar 

  • Liao JX, Yeh HM, Mok HK (2015) Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices. Zool Stud 54:14. doi:10.1186/s40555-014-0101-8

    Article  CAS  Google Scholar 

  • Liddicoat MI, Tribbitts S, Butler EI (1975) The determination of ammonia in seawater. Limnol Oceanogr 20:131–132

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  PubMed  CAS  Google Scholar 

  • Losi V, Ferrero TJ, Moreno M, Gaozza L, Rovere A, Firpo M, Marques JC, Albertelli G (2013) The use of nematodes in assessing ecological conditions in shallow waters surrounding a Mediterranean harbor facility. Estuar Coast Shelf Sci 130:209–221. doi:10.1016/j.ecss.2013.02.017

    Article  Google Scholar 

  • Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aïssa P (2005) Effects of hydrocarbon contamination on a free-living marine nematode community: results from microcosm experiments. Mar Pollut Bull 50:1197–1204. doi:10.1016/j.marpolbul.2005.04.018

    Article  PubMed  CAS  Google Scholar 

  • Majdi N, Traunspurger W (2015) Free-living nematodes in the freshwater food web: a review. J Nematol 47:28–44

    PubMed  PubMed Central  Google Scholar 

  • Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R et al (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Handbook of zoology. De Gruyter, Berlin, pp 109–152. doi:10.1515/9783110274257.109

  • Mohanty B, Muduli PR, Behera AT, Mahapatro D, Barik SK, Nag SK et al (2016) Assessment of petroleum hydrocarbon in a tropical brackish water lagoon: Chilika. India. doi:10.1080/02757540.2016.1177521

    Article  Google Scholar 

  • Mohapatra A, Mohanty RK, Mohanty SK, Bhatta KS, Das NR (2007) Fisheries enhancement and biodiversity assessment of fish, prawn and mud crab in Chilika lagoon through hydrological intervention. Wetlands Ecol Manage 15:229–251. doi:10.1007/s11273-006-9025-3

    Article  Google Scholar 

  • Moreno M, Semprucci F, Vezzulli L, Balsamo M (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic 11:328–336. doi:10.1016/j.ecolind.2010.05.011

    Article  Google Scholar 

  • Nalepa TF, Quigley MA, Ziegler RW (1988) Sampling efficiency of the Ponar grab in two different benthic environments. J Great Lakes Res 14:89–93

    Article  Google Scholar 

  • Netto SA, Fonseca G (2017) Regime shifts in coastal lagoons: evidence from free-living marine nematodes. PLoS ONE 12(2):e0172366. doi:10.1371/journal.pone.0172366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panda US, Mohanty PK (2008) Monitoring and modeling of Chilika environment using remote sensing data. In: Sengupta M, Dalwani R (eds) Proceedings of Taal2007: the 12th world lake conference, Jaipur, India, pp 617–638

  • Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shollow brackish water ecosystem (Chilika lagoon, India). Limnology 10:73–85. doi:10.1007/s10201-009-0262-z

    Article  CAS  Google Scholar 

  • Pérez-García JA, Ruiz-Abierno A, Armenteros M (2015) Does morphology of host marine macroalgae drive the ecological structure of epiphytic meiofauna? J Mar Biol Oceanogr 4:1. doi:10.4172/2324-8661.1000139

    Article  Google Scholar 

  • Pfannkuche O, Thiel H (1988) Sample Processing. In: Higgins RP, Thiel H (eds) Introduction to the study of Meiofauna. Smithsonian Institute Press, Washington DC, pp 134–145

    Google Scholar 

  • Platt HM, Warwick RM (1983) Free living marine nematodes, Part I, British Enoplids, Pictorial key to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) Synopses of the British Fauna, vol 28. Cambridge University Press, Cambridge, pp 1–307

    Google Scholar 

  • Platt HM, Warwick RM (1988) Free living marine nematodes, Part II, British Chromodorids, Pictorial key to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) Synopses of the British Fauna (new series), vol 38. Brill/Backhuys, Leiden, pp 1–502

    Google Scholar 

  • Schratzberger M, Ingels J (2017) Meiofauna matters: the role of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. doi:10.1016/j-jembe.2017.01.007

    Article  Google Scholar 

  • Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4:67–69. doi:10.1163/187529259X00381

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Baldelli G, Rocchi M, Balsoma M (2010) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar Ecol 31:592–607. doi:10.1111/j.1439-0485.2010.00383.x

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Rocchi M, Balsamo M (2011) Meiofuana in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). J Mar Syst 87:208–221. doi:10.1016/j.jmarsys.2011.04.002

    Article  Google Scholar 

  • Semprucci F, Balsoma M, Frontalini F (2014a) The nematode assemblage of a coastal lagoon (Lake Varano, southern Italy): ecology and biodiversity patterns. Sci Mar 78:579–588. http://dx.doi.org/10.3989/scimar.04018.02A

  • Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Balsamo M (2014b) Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). J Mar Biol Assoc UK 94:1377–1385. doi:10.1017/S002531541400068X

    Article  Google Scholar 

  • Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR, Samal RN, Pattnaik AK, Rastogi G (2015a) Spatiotemporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 187:47. doi:10.1007/s10661-014-4212-9

    Article  PubMed  CAS  Google Scholar 

  • Srichandan S, Kim JY, Kumar A, Mishra DR, Bhadury P, Muduli PR, Pattnaik AK, Rastogi G (2015b) Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon. Mar Pollut Bull 101:39–52. doi:10.1016/j.marpolbul.2015.11.030

    Article  PubMed  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1984) A practical handbook of seawater analysis. Bulletin (vol. 167), Fisheries Research Board of Canada, Queen’s Printer, Ottawa

  • Tahseen Q (2012) Nematodes in aquatic environments: adaptations and survival strategies. Biodiver J 3:13–40

    Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and user’s guide to CANOCO for Windows: software for canonical community ordination (version 4.53). Microcomputer power, Ithaca, New York

  • Turner RE, Qureshi N, Rabalais NN (1998) Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proc Natl Acad Sci USA 95:13048–13051. doi:10.1073/pnas.95.22.13048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ürkmez D, Brennan ML, Sezgin M, Bat L (2015) A brief look at the free-living nematoda of the oxic/anoxic interface with a new genus record (Trefusia) for the Black Sea. Oceanol Hydrol Stud 44:539–551. doi:10.1515/ohs-2015-0051

    Article  CAS  Google Scholar 

  • Vanaverbeke J, Steyaert M, Soetaert K, Rousseau V, Gansbeke DV, Parent J, Vincx M (2004) Changes in structural and functional diversity of nematode community during spring phytoplankton bloom in the southern North Sea. J Sea Res 52:281–292. doi:10.1016/j.seares.2004.02.004

    Article  Google Scholar 

  • Vanaverbeke J, Merckx B, Degraer S, Vincx M (2011) Sediment-related distribution patterns of nematodes and macrofuana: two sides of the benthic coin? Mar Environ Res 71:31–40. doi:10.1016/j.marenvres.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  • Vanaverbeke J, Bezerra TN, Braeckman U, De Groote A, De Meester N, Deprez T et al (2015). NeMys: world database of free-living marine nematodes at http://www.nemys.ugent.be/aphia.php?p=taxadetails&id=2132 added on 02.03.2015

  • Vanreusel A, Fonseca G, Danovaro R, Da Silva MC, Esteves AM, Ferrero T et al (2010) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar Ecol 31:6–20. doi:10.1111/j.1439-0485.2009.00352.x

    Article  Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJD (1998) Free-living marine nematodes, Part III, Monhysterids, Pictorial key to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) Synopses of the British Fauna (new series). Field Studies Council, Shrewsbury, pp 1–296

    Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundho¨ hlengestalt, Erna¨ hrungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoologi 4:439–484

    Google Scholar 

Download references

Acknowledgements

This work is supported by a grant awarded to Punyasloke Bhadury by Chilika Development Authority (CDA) through the financial support received from the World Bank supported Integrated Coastal Zone Management Project (ICZMP) of Odisha. We are also grateful to Integrative Taxonomy and Microbial Ecology Research Group members for helping us during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyasloke Bhadury.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, K.G.M.T., Pattnaik, A.K., Rastogi, G. et al. Characterization of benthic habitat settings in a lagoonal ecosystem using free-living nematodes as proxy. Wetlands Ecol Manage 26, 175–194 (2018). https://doi.org/10.1007/s11273-017-9564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-017-9564-9

Keywords

Navigation