Wetlands Ecology and Management

, Volume 25, Issue 2, pp 221–234 | Cite as

Using stable hydrogen and oxygen isotopes to study water movement in soil-plant-atmosphere continuum at Poyang Lake wetland, China

  • Xiang Zhang
  • Yang Xiao
  • Hui Wan
  • Zhimin Deng
  • Guoyan Pan
  • Jun Xia
Original Paper

Abstract

Water movement in the soil-plant-atmosphere continuum (SPAC) has a significant effect on the biogeochemical process in wetlands. This study investigated the water movement in the SPAC in Poyang Lake wetland, which is a protected area with an important ecological function within the Yangtze River basin, under different water-level conditions by analyzing the responses of river, groundwater, soil and plants to precipitation using stable hydrogen and oxygen isotopes. The results show that the stable hydrogen and oxygen isotopic compositions (δ18O and δD) of soil water decrease with increasing depth due to the near surface evaporation. During the dry season the water-level in Poyang Lake is low, when it rains the influencing depth of precipitation and evaporation on soil water isotopic signatures was 20 cm below the ground surface. The rain water infiltrates into the soil, recharges groundwater and flows to the river. When the water-level in Poyang Lake is low, the Xiu River is recharged by the groundwater, which recharges the soil water by capillary rise. During the flood season, the water-level is high and the water in Poyang Lake reaches or covers the meadows, recharges the groundwater and soil water. In the meantime, the water in Poyang Lake can be recharged by rain water when it rains. During the dry season when it doesn’t rain, plants mainly use groundwater, but soil water is preferred and plants don’t use rainwater directly when it rains. When the lake water-level is extremely low, the plants in Poyang Lake wetland may suffer from water stress, which is harmful for plant growth.

Keywords

Water movement SPAC Water-level Poyang Lake wetland 

References

  1. Barnes CJ, Allison GB (1983) The distribution of deuterium and oxygen-18 in dry soils: I Theory. J Hydrol 60:141–156. doi:10.1016/0022-1694(83)90018-5 CrossRefGoogle Scholar
  2. Barnes CJ, Allison GB (1988) Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100(1-3):143–176. doi:10.1016/0022-1694(88)90184-9 CrossRefGoogle Scholar
  3. Barron O, Silberstein R, Ali R, Donohue R, McFarlane DJ, Davies P, Hodgson G, Smart N, Donn M (2012) Climate change effects on water-dependent ecosystems in south-western Australia. J Hydrol 434–435:95–109. doi:10.1016/j.jhydrol.2012.02.028 CrossRefGoogle Scholar
  4. Bath AH, Darling WG, Brunsdon AP (1982) The stable isotopic composition of infiltration moisture in the unsaturated zone of English Chalk. In: Schmidt HL et al (eds) Stable isotopes. Elsevier, Amsterdam, pp 161–166Google Scholar
  5. Chimner RA, Cooper DJ (2004) Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant Soil 260:225–236. doi:10.1023/B:PLSO.0000030190.70085.e9 CrossRefGoogle Scholar
  6. Corbin JD, Thomsen MA, Dawson TE, D’Antonio CM (2005) Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145(4):511–521. doi:10.1007/s00442-005-0152-y CrossRefPubMedGoogle Scholar
  7. Craig H (1961) The meteoric isotope line. Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefPubMedGoogle Scholar
  8. Dawson TE (1993) Hydraulic lift and water use in plants: implications for performance, water balance and plant-plant interactions. Oecologia 95(4):565–574. doi:10.1007/BF00317442 CrossRefGoogle Scholar
  9. Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350(6316):335–337. doi:10.1038/350335a0 CrossRefGoogle Scholar
  10. Dawson TE, Pate JS (1996) Seasonal water uptake and movement in root systems of Australian phreatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107(1):13–20. doi:10.1007/BF00582230 CrossRefGoogle Scholar
  11. Deng X, Zhao Y, Wu F, Lin Y, Lu Q, Dai J (2011) Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China. Ecol Model 222(2):330–336CrossRefGoogle Scholar
  12. Ehleringer JR, Phillips SL, William SFS, Sandquist DR (1991) Differential utilization of summer rains by desert plants. Oecologia 88(3):430–434. doi:10.1007/BF00317589 CrossRefGoogle Scholar
  13. Flanagan L, Bain J, Ehleringer J (1991) Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88(3):394–400. doi:10.1007/BF00317584 CrossRefGoogle Scholar
  14. Green SR, Clothier BE (1995) Root water uptake by kiwifruit vines following partial wetting of the root zone. Plant Soil 173:317–328. doi:10.1007/BF00011470 CrossRefGoogle Scholar
  15. Green SR, Clothier BE, McLeod DJ (1997) The response of sap flow in apple roots to localised irrigation. Agric Water Manag 33(1):63–78. doi:10.1016/S0378-3774(96)01277-2 CrossRefGoogle Scholar
  16. Harvey FE (2005) Stable hydrogen and oxygen isotope composition of precipitation in northeastern Colorado. J Am Water Resour Assoc 41(2):447–460. doi:10.1111/j.1752-1688.2005.tb03748.x CrossRefGoogle Scholar
  17. Hu CH, Froehlich K, Zhou P, Lou Q, Zeng SM, Zhou WB (2013) Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China. Isot Environ Health Stud 49(2):188–196. doi:10.1080/10256016.2013.740480 CrossRefGoogle Scholar
  18. Hu Y, Huang J, Du Y, Han P, Wang J, Huang W (2015) Monitoring wetland vegetation pattern response to water-level change resulting from the three Gorges Project in the two largest freshwater lakes of China. Ecol Eng 74:274–285. doi:10.1016/j.ecoleng.2014.10.002 CrossRefGoogle Scholar
  19. Hunt RJ, Bullen TD, Krabbenhoft DP, Kendall C (1998) Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland. Ground Water 36(3):434–443. doi:10.1111/j.1745-6584.1998.tb02814.x CrossRefGoogle Scholar
  20. Jiang F, Qi S, Liao F, Ding M, Wang Y (2014) Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. GISci Remote Sens 51(6):662–676. doi:10.1080/15481603.2014.978126 CrossRefGoogle Scholar
  21. Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method. Water Resour Res 26(10):2445–2453. doi:10.1029/WR026i010p02445 Google Scholar
  22. Lai X, Shankman D, Huber C, He Yesou, Huang Q, Jiang J (2014) Sand mining and increasing Poyang Lake’s discharge ability: a reassessment of causes for Lake decline in China. J Hydrol 519:1698–1706. doi:10.1016/j.jhydrol.2014.09.058 CrossRefGoogle Scholar
  23. Lee KS, Kim JM, Lee DR, Kim Y, Lee D (2007) Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J Hydrol 345:199–211. doi:10.1016/j.jhydrol.2007.08.006 CrossRefGoogle Scholar
  24. Lei S, Zhang XP, Li RF, Xu XH, Fu Q (2011) Analysis the changes of annual for Poyang Lake wetland vegetation based on MODIS monitoring. Procedia Environ Sci 10:1841–1846. doi:10.1016/j.proenv.2011.09.288 CrossRefGoogle Scholar
  25. Liu Y, Xu Z, Duffy R, Chen W, An S, Liu S, Liu F (2011) Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes. Eur J Soil Biol 47(6):380–386. doi:10.1016/j.ejsobi.2011.07.012 CrossRefGoogle Scholar
  26. Luo W, Zhang X, Deng Z (2013) Variation of the total runoff into Poyang Lake and drought-flood abrupt alternation during the past 50 years. J Basic Sci Eng 21(5):845–856Google Scholar
  27. Piao S, Philippe C, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Pierre F, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43. doi:10.1038/nature09364 CrossRefPubMedGoogle Scholar
  28. Tang KL, Feng XH (2001) The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants’ source water. Earth Planet Sci Lett 185:355–367. doi:10.1016/S0012-821X(00)00385-X CrossRefGoogle Scholar
  29. Thorburn PJ, Walker GR (1993) The source of water transpired by Eucalyptus camaldulensis: soil, groundwater, or streams? Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 511–527CrossRefGoogle Scholar
  30. Wang P, Song XF, Han D, Zhang Y, Liu X (2010) A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: a case in Shanxi Province, China. Agric Water Manag 97(3):475–482. doi:10.1016/j.agwat.2009.11.008 CrossRefGoogle Scholar
  31. Xu Q, Liu SR, Wan XC, Jiang CQ, Song XF, Wang JX (2012) Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrol Process 26(25):3800–3809. doi:10.1002/hyp.8400 CrossRefGoogle Scholar
  32. Xu X, Zhang Q, Li Y, Li X, Wang X (2014) Inner-annual variation of soil water content and groundwater level in a typical islet wetland of Lake Poyang. J Lake Sci 26(02):260–268CrossRefGoogle Scholar
  33. Yang C, Telmer K, Veizer J (1996) Chemical Dynamics of the “St. Lawrence” Riverine System: δDH2O, δ18OH2O, δ13CDIC, δ34S, and Dissolved 87Sr/86Sr. Geochim Cosmochim Acta 60(5):851–866. doi:10.1016/0016-7037(95)00445-9 CrossRefGoogle Scholar
  34. Yang Y, Xiao H, Qin Z, Zou S (2013) Hydrogen and oxygen isotopic records in monthly scales variations of hydrological characteristics in the different landscape zones of alpine cold regions. J Hydrol 499:124–131. doi:10.1016/j.jhydrol.2013.06.025 CrossRefGoogle Scholar
  35. Yao H, Hashino M, Yoshida H (1996) Modeling energy and water cycle in a forested headwater basin. J Hydrol 174:221–234. doi:10.1016/0022-1694(95)02766-1 CrossRefGoogle Scholar
  36. Ye C, Wu G, Zhao X, Wang X, Liu Y (2014) Responses of wetland vegetation to droughts and its impact factors in Poyang Lake National Nature Reserve. J Lake Sci 26(02):253–259CrossRefGoogle Scholar
  37. Zhang C, Zhang J, Zhao B, Zhu A, Zhang H, Huang P, Li X (2011) Coupling a two-tip linear mixing model with a δD–δ18O plot to determine water sources consumed by maize during different growth stages. Field Crops Res 123(3):196–205. doi:10.1016/j.fcr.2011.04.018 CrossRefGoogle Scholar
  38. Zhang L, Yin J, Jiang Y, Wang H (2012a) Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang Lake National Nature Reserve, China. Ecol Inform 11:65–75. doi:10.1016/j.ecoinf.2012.05.006 CrossRefGoogle Scholar
  39. Zhang Q, Li L, Wang Y, Werner AD, Xin P, Jiang T, Barry DA (2012) Has the Three—Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys Res Lett 39(20). doi: 10.1029/2012GL053431
  40. Zimmermann U, Ehhalt D, Munnich KO (1968) Soil-water movement and evapotranspiration: changes in the isotopic composition of the Water. Proc. IAEA Symp Isot. Hydrol, IAEA ViennaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xiang Zhang
    • 1
    • 2
  • Yang Xiao
    • 1
    • 2
  • Hui Wan
    • 3
  • Zhimin Deng
    • 4
  • Guoyan Pan
    • 1
  • Jun Xia
    • 1
    • 2
  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of EducationJiangxi Normal UniversityNanchangChina
  3. 3.Changjiang Institute of Survey, Planning, Design and ResearchWuhanChina
  4. 4.Changjiang Water Resources Protection InstituteWuhanChina

Personalised recommendations