Skip to main content

Advertisement

Log in

Temporal patterns of water quality in the Pantanal floodplain and its contributing Cerrado upland rivers: implications for the interpretation of freshwater integrity

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Water quality time series available for major tropical floodplains commonly have low temporal resolutions and irregular sampling frequencies. Here we examine such data using singular spectrum analysis, a non-parametric time series analysis technique, to assess the typical cyclical variations and long-term trends in upland Cerrado and lowland floodplain reaches of three rivers that are tributaries to the Pantanal in Brazil to evaluate ecological state and impact level, and develop recommendations for improved monitoring of Cerrado–Pantanal river systems. Both upland and lowland reaches have their average water quality cycles linked to a monocyclical hydrological regime. Amplitudes of nutrient concentrations (N, P) and Turbidity are higher in the uplands, whereas cyclical oxygen variations are up to two times higher in the floodplain reaches. SSA showed that trend extraction is possible for parameters with lower intra-annual variations and were found to be partially opposing (oxygen) in upland (negative trend) and floodplain (positive trend) stations. Land use intensification in the uplands is reflected by N concentrations in upland reaches. In the floodplain, the Paraguay river was found under a slight TN enrichment regime of about 0.02 mg L−1 per year between 1995 and 2009. Assuming a fixed budget for institutional water quality monitoring, we recommend a reduction of the 150 registered sampling gauges by environmental agencies in the Brazilian Pantanal and its contribution area, 95 % of them with less than four samples per year, in favor of using the same resources for increased sampling frequency at a smaller number of sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ANA—Agencia Nacional das Águas (2002) Plano Nacional de Recursos Hídricos. Documento Base de Referência – Minuta. http://www.ana.gov.br/pnrh/. Accessed 14 Apr 2014

  • ANA—Agencia Nacional das Águas (2014) Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). http://www2.snirh.gov.br/home. Accessed 21 Nov 2014

  • APHA—American Public Health Association,1998 Standard Methods for the Examination of Water and Wastewater 20 American Public Health AssociationWashington

  • Assine ML, Silva A (2009) Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology 113:189–199

    Article  Google Scholar 

  • Ayres RM (2002) Avaliação indireta das ações antrópicas no meio físico e os impactos sedimentológicos na Bacia do Rio Cuiabá. Dissertation, COPPE/Universidade Federal do Rio de Janeiro

  • Bhat S, Hatfield K, Jacobs J et al (2007) Surface runoff contribution of nitrogen during storm events in a forested watershed. Biogeochemistry 85:253–262

    Article  CAS  Google Scholar 

  • Bernoux M, Cerri CC, Cerri CEP et al (2009) Cropping systems, carbon sequestration and erosion in Brazil: a review. Agron Sustain Dev 26:1–8

    Article  CAS  Google Scholar 

  • Biggs TW, Dunne T, Domingues TF, Martinelli LA (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Water Resour Res. doi:10.1029/2001WR000271

    Google Scholar 

  • Biggs TW, Dunne T, Muraoka T (2006) Transport of water, solutes, and nutrients from a pasture hill slope, southwestern Brazilian Amazon. Hydrol Process 20:2527–2547

    Article  CAS  Google Scholar 

  • Calheiros DF (2003) Influência do Pulso de Inundação na Composição Isotópica (δ13C e δ15N) das Fontes Primárias de Energia na Planície de Inundação do Rio Paraguai (Pantanal-MS). PhD Thesis, CENA/Universidade de São Paulo

  • Calheiros DF, Hamilton SK (1998) Limnological conditions associated with natural fish kills in the Pantanal wetland of Brazil. Verh Int Ver Theor Angew Limnol 26:2189–2193

    Google Scholar 

  • Calheiros DF, Seidl DF, Ferreira CJA (2000) Participatory research methods in environmental science: local and scientific knowledge of a limnological phenomenon in the Pantanal wetland of Brazil. J Appl Ecol 37:684–696

    Article  Google Scholar 

  • Campling P, Gobin A, Feyen J (2001) Temporal and spatial rainfall analysis across a humid tropical catchment. Hydrol Process 15:359–375

    Article  Google Scholar 

  • Cox BA (2003) A review of dissolved oxygen modelling techniques for lowland rivers. Sci Tot Environ 314–316:303–334

    Article  CAS  Google Scholar 

  • Cunha DGF, Dodds WK, Calijuri MC (2011) Defining nutrient and biochemical oxygen demand baselines for tropical rivers and streams in São Paulo State (Brazil): a comparison between reference and impacted sites. Environ Manag 48:945–956

    Article  Google Scholar 

  • Davidson EA, Neill C, Krusche AV et al (2004) Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia. In: De Fries R, Asner G, Houghton R (eds) Ecosystems and Land Use Change. AGU, Washington D.C., pp 147–158

    Chapter  Google Scholar 

  • Davies-Colley RJ, Smith DG (2001) Turbidity, suspended sediment, and water clarity: a review. J Am Water Resour Assoc 37:1085–1101

    Article  Google Scholar 

  • FAO (2011) AQUASTAT database. http://www.fao.org/nr/water/aquastat/main. Accessed 2 August 2013

  • Fearnside PM (2003) Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil’s Amazon forest. Ambio 32:343–345

    Article  PubMed  Google Scholar 

  • Figueiredo RO, Markewitz D, Davidson EA et al (2010) Land-use effects on the chemical attributes of low-order streams in the eastern Amazon. J Geophys Res. doi:10.1029/2009JG0012001

    Google Scholar 

  • Galdino S, Vieira LM, Pellegrin LA (2005) Impactos ambientais e socioeconômicos na Bacia do Rio Taquari-Pantanal. Embrapa, Corumbá. http://www.cpap.embrapa.br/publicacoes. Accessed 20 Dec 2012

  • Galloway JN, Aber JD, Erisman JW et al (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Germer S, Neill C, Krusche AV, Elsenbeer H (2010) Influence of land-use change on near-surface hydrological processes: undisturbed forest to pasture. J Hydrol 380:473–480

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1–41

    Article  Google Scholar 

  • Golyandina N, Korobeynikov A (2014) Basic singular spectrum analysis and forecasting with R. Comput Stat Data Anal 71:934–954

    Article  Google Scholar 

  • Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with missing values. J Stat Plan Inference 137:2642–2653

    Article  Google Scholar 

  • Golyandina N, Shlemov A (2015) Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series. Stat Interface 8:277–294

    Article  Google Scholar 

  • Gücker B, Boëchat IG, Giani A (2009) Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshw Biol 54:2069–2085

    Article  CAS  Google Scholar 

  • Hamilton SK (2002) Hydrological controls of ecological structure and function in the Pantanal wetland (Brazil). In: McClain M (ed) The ecohydrology of Southamerican rivers and wetlands. International Association of Hydrological Sciences, Wallingford, pp 133–158

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30:115–141

    Article  CAS  Google Scholar 

  • Hamilton SK, Sippel SJ, Calheiros DF, Melack JM (1997) An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnol Oceanogr 42:257–272

    Article  CAS  Google Scholar 

  • Harcum JB, Loftis JC, Ward RC (1992) Selecting trend tests for water quality series with serial correlation and missing values. J Am Water Resour Assoc 28:469–478

    Article  CAS  Google Scholar 

  • Hunke P, Mueller EN, Schröder B, Zeilhofer P (2014) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology. doi:10.1002/eco.1573

    Google Scholar 

  • Jordan SJ, Stoffer J, Nestlerode JA (2011) Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems 14:144–155

    Article  CAS  Google Scholar 

  • Junk W, Nunes da Cunha C (2005) Pantanal: a large South American wetland at a crossroads. Ecol Eng 24:391–401

    Article  Google Scholar 

  • Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13:151–159

    Article  Google Scholar 

  • Kondrashov D, Feliks YE, Ghil M (2005) Oscillatory modes of extended Nile River records. Geophys Res Lett. doi:10.1029/2004GL022156

    Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Lima CRN, Zeilhofer P, Dores EFGC, Fantin-Cruz I (2015) Variabilidade espacial da Qualidade de Água em Escala de Bacias - Rio Cuiabá e São Lourenço, Mato Grosso. Revista Brasileira de Recursos Hídricos 20:169–178

    Article  Google Scholar 

  • Maltas A, Corbeels M, Scopel E et al (2007) Long-term effects of continuous direct seeding mulch-based cropping systems on soil nitrogen supply in the Cerrado region of Brazil. Plant Soil 298:161–173

    Article  CAS  Google Scholar 

  • Markewitz D, Davidson EA, Moutinho P, Nepstad DC (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14:177–199

    Article  Google Scholar 

  • Markewitz D, Resende JCF, Parron L et al (2006) Dissolved rainfall inputs and stream water outputs in an undisturbed watershed on highly weathered soils in the Brazilian Cerrado. Hydrol Process 20:2615–2639

    Article  CAS  Google Scholar 

  • Marques CAF, Ferreira JA, Rocha A et al (2006) Singular spectrum analysis and forecasting of hydrological time series. Phys Chem Earth 31:1172–1179

    Article  Google Scholar 

  • McCuen RH (1982) A guide to hydrologic analysis using SCS methods. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Miranda K, Cunha MLF, Dores EFGC, Calheiros DF (2008) Pesticide residues in river sediments from the Pantanal Wetland, Brazil. J Environ Sci Health Part B 43:1–6

    Article  CAS  Google Scholar 

  • Morris JT (1991) Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Annu Rev Ecol Syst. doi:10.1146/annurev.es.22.110191.001353

    Google Scholar 

  • Nason GP (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J R Stat Soc Ser B 75:879–904

    Article  Google Scholar 

  • Neill C, Deegan LA, Thomas SM, Cerri CC (2001) Deforestation for pasture alters nitrogen and phosphorus in soil solution and stream water of small Amazonian watersheds. Ecol Appl 11:1817–1828

    Article  Google Scholar 

  • Neill C, Elsenbeer H, Krusche AV et al (2006) Hydrological and biogeochemical processes in a changing Amazon: results from small watershed studies and the large-scale biosphere-atmosphere experiment. Hydrol Process 20:2467–2476

    Article  Google Scholar 

  • Neuhäuser M (2010) A nonparametric two-sample comparison for skewed data with unequal variances. J Clin Epidemiol 63:691–693

    Article  PubMed  Google Scholar 

  • Oliveira M, Calheiros DF (2000) Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiology 427:102–112

    Google Scholar 

  • Oliveira M, Hamilton SK, Calheiros DF, Jacobi CM (2010) Oxygen depletion events control the invasive golden mussel (Limnoperna fortunei) in a tropical floodplain. Wetlands 30:705–716

    Article  Google Scholar 

  • Oliveira M, Calheiros DF, Jacobi CM, Hamilton SK (2011) Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei. Biol Invasions 13:717–729

    Article  Google Scholar 

  • Oliveira M, Calheiros DF, Padovani CR (2013) Mapeamento e Descrição das Áreas de Ocorrência dos Eventos de Decoada no Pantanal. Embrapa, Corumbá. http://www.cpap.embrapa.br/publicacoes. Accessed 10 Nov 2014

  • Parron LM, Bustamante MMC, Markewitz D (2010) Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry. doi:10.1007/s10533-010-9537-z

    Google Scholar 

  • Paz AR, Collischonn W, Tucci CEM, Padovani CR (2011) Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol Process 25:1498–1516

    Article  Google Scholar 

  • Petry P, Rodrigues ST, Ramos Neto MB et al (2011) Ecological risk assessment for the Paraguay River Basin: Argentina, Bolivia, Brazil, and Paraguay. The Nature Conservancy Brazil, Brasilia

    Google Scholar 

  • Podrabsky JE, Hrbek T, Hand SC (1998) Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela. Hydrobiologia 362:67–77

    Article  Google Scholar 

  • Prieto R, Gimeno L, García R et al (1999) Interannual variability of hail-days in the Andes region since 1885. Earth Planet Sci Lett 171:503–509

    Article  CAS  Google Scholar 

  • Quinn NTW, Jacobs K, Chen KW et al (2005) Elements of decision support system for real-time management of dissolved oxygen in the San Joaquin River Deep Water Ship Cannel. Environ Model Softw 2:1495–1504

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 21 March 2014

  • Resende JCF, Markewitz D, Klink CA et al (2011) Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry 105:105–118

    Article  CAS  Google Scholar 

  • Richey JE, Wilhelm SR, McClain ME et al (1997) Organic matter and nutrient dynamics in river corridors of the Amazon basin and their response to anthropogenic change. Ciência e Cultura 49:98–110

    CAS  Google Scholar 

  • Sammut J, White I, Melville MD (2010) Stratification in acidified coastal floodplain drains. Wetlands 13:49–64

    Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG Jr (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  PubMed  Google Scholar 

  • Schoellhamer DH (2001) Singular spectrum analysis for time series with missing data. Geophys Res Lett 28:3187–3190

    Article  Google Scholar 

  • Shapiro SS, Wilk MB, Chen HJ (1968) A comparative study of various tests of normality. J Am Stat Assoc 63:1343–1372

    Article  Google Scholar 

  • Silva JSO, Bustamante MMC, Markewitz D et al (2010) Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry. doi:10.1007/s10533-010-9557-8

    Google Scholar 

  • Skovlund E, Fenstad GU (2001) Should we always choose a nonparametric test when comparing two apparently nonnormal distributions? J Clin Epidemiol 54:86–92

    Article  CAS  PubMed  Google Scholar 

  • Templer PH, Silver WL, Pett-Ridge J et al (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology 89:3030–3040

    Article  Google Scholar 

  • Thomas SM, Neill C, Deegan LA et al (2004) Influences of land use and stream size on particulate and dissolved materials in a small Amazonian stream network. Biogeochemistry 68:135–151

    Article  CAS  Google Scholar 

  • Towler E, Rajagopalan B, Gilleland E et al (2010) Modeling hydrologic and water quality extremes in a changing climate: a statistical approach based on extreme value theory. Water Resour Res. doi:10.1029/2009WR008876

    Google Scholar 

  • VanWey LK, Spera S, de As R et al (2013) Socioeconomic development and agricultural intensification in Mato Grosso. Phil Trans R Soc B 368:20120168

    Article  PubMed  PubMed Central  Google Scholar 

  • WWF (2009) Monitoramento das alterações da cobertura vegetal e uso do Solo na Bacia do Alto Paraguai—Porção Brasileira—Período de Análise: 2002 a 2008. WWF, Brasília, DF

  • Zeilhofer P, Moura RM (2009) Hydrological changes in the northern Pantanal caused by the Manso dam: impact analysis and suggestions for mitigation. Ecol Eng 35:105–117

    Article  Google Scholar 

  • Zeilhofer P, Lima EBNR, Lima GAR (2006) Spatial patterns of water quality in the Cuiabá River Basin, Central Brazil. Environ Monit Assess 123:41–62

    Article  CAS  PubMed  Google Scholar 

  • Zeilhofer P, Lima EBNR, Lima GAR (2010) Land use effects on water quality in the urban agglomeration of Cuiabá and Várzea Grande, Mato Grosso State, Central Brazil. Urban Water J 7(3):173–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Andrew Vinten and Professor Dr. Stephen K. Hamilton for their valuable comments on the manuscript and English corrections.

Funding

This research was funded by the Brazilian National Council for Scientific and Technological Development (CNPq), Embrapa Pantanal and the Mato Grosso Research Foundation (FAPEMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Zeilhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeilhofer, P., Calheiros, D.F., de Oliveira, M.D. et al. Temporal patterns of water quality in the Pantanal floodplain and its contributing Cerrado upland rivers: implications for the interpretation of freshwater integrity. Wetlands Ecol Manage 24, 697–716 (2016). https://doi.org/10.1007/s11273-016-9497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9497-8

Keywords

Navigation