Skip to main content

Advertisement

Log in

Managing plant species diversity under fluctuating wetland conditions: the case of temporarily flooded depressions

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Temporarily flooded depressions in arable fields support populations of specialised plant species that are affected by flooding and agricultural management. Depending on the degree of flooding, different proportions of wetland and arable species contribute to the seed bank. This is reflected by high inter-annual variations in plant communities with a high conservation value. Due to ongoing agricultural intensification, the biodiversity of temporarily flooded depressions has declined, and several plant species have become regionally extinct. Because seed banks harbour persistent seeds over long periods, they play a crucial role in the conservation and restoration of temporary wetland vegetation. This study focuses on the effects of different flooding regimes on plant species emerging from seed banks of temporarily flooded depressions in arable fields in northeast Germany. We cultivated soil samples from upper and lower wetland zones under short, intermediate and long-term flooding (5, 15 and 40 cm above soil surface) in a common garden experiment over 2 years. We observed significant changes in species composition depending on the flooding duration. Species richness declined and evenness increased with increasing flooding duration. Upper and lower zones showed similar species richness and evenness, but species compositions differed. Red List species emerged from all treatments although the species differed, indicating that all communities emerging under different flooding regimes have a high conservation value. Seed banks under fluctuating site conditions can constitute a series of alternating plant communities. This could be used to develop management strategies that benefit different communities with high conservation values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht H (1999) Vergesellschaftung, Standorteigenschaften und Populationsökologie von Arten der Klasse Isoëto-Nanojuncetea auf Ackerflächen. Mitt bad Landesver Naturkunde u Naturschutz NF 17:403–417

    Google Scholar 

  • Altenfelder S, Raabe U, Albrecht H (2014) Effects of water regime and agricultural land use on diversity and species composition of vascular plants inhabiting temporary ponds in northeastern Germany. Tuexenia 34:145–162

    Google Scholar 

  • Altenfelder S, Kollmann J, Albrecht H (2016) Effects of farming practice on populations of threatened amphibious plant species in temporarily flooded arable fields: implications for conservation management. Agric Ecosyst Environ 222:30–37

    Article  Google Scholar 

  • Aponte C, Kazakis G, Ghosn D, Papanastias VP (2010) Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics. Wetl Ecol Manag 18:243–253

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Bekker RM, Verweij GL, Bakker JP, Fresco LFM (2000) Soil seed bank dynamics in hayfield succession. J Ecol 88:594–607. doi:10.1046/j.1365-2745.2000.00485.x

    Article  Google Scholar 

  • Bell DM, Hunter JT, Montgomery L (2012) Ephemeral wetlands of the Pilliga Outwash, northwest NSW. Cunninghamia 12:181–190. doi:10.7751/cunninghamia.2012.12.015

    Article  Google Scholar 

  • Bernhardt KG, Koch M, Ulbel E, Webhofer J (2004) The soil seed bank as a resource for in situ and ex situ conservation of extinct species. In: Robbrecht E, Bogaerts A (eds) EuroGard III: papers from the third European botanic gardens congress and the second European botanic gardens education congress (BEDUCO II). Scripta Botanica Belgica Series, vol 29. National Botanic Garden, Meise, pp 135–139

  • Bing (2012) Parstein, Germany. 52.936391 N, 14.024835 E. HERE 2015

  • Bissels S, Donath TW, Hölzel N, Otte A (2005) Ephemeral wetland vegetation in irregularly flooded arable fields along the northern Upper Rhine: the importance of persistent seedbanks. Phytocoenologia 2–3:469–488

    Article  Google Scholar 

  • Bliss SA, Zedler PH (1998) The germination process in vernal pools: sensitivity to environmental conditions and effects on community structure. Oecologia 113:67–73

    Article  Google Scholar 

  • Blümel C, Raabe U (2004) Vorläufige Checkliste der Characeen Deutschlands. Rostocker Meeresbiologische Beiträge 13:9–26

    Google Scholar 

  • Bock CE, Jones ZF, Bock JH (2007) Relationships between species richness, evenness, and abundance in a southwestern Savanna. Ecology 88:1322–1327. doi:10.1890/06-0654

    Article  PubMed  Google Scholar 

  • Brock MA (2011) Persistence of seed banks in Australian temporary wetlands: persistence of seed banks in Australian temporary wetlands. Freshw Biol 56:1312–1327. doi:10.1111/j.1365-2427.2010.02570.x

    Article  Google Scholar 

  • Burrichter E, Hüppe J, Pott R (1993) Agrarwirtschaftlich bedingte Vegetationsanreicherung und—verarmung in historischer Zeit. Phytocoenologia 23:427–447

    Article  Google Scholar 

  • Casanova MT (2012) Does cereal crop agriculture in dry swamps damage aquatic plant communities? Aquat Bot 103:54–59. doi:10.1016/j.aquabot.2012.06.002

    Article  Google Scholar 

  • Casanova MT, Brock MA (1990) Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquat Bot 36:247–254

    Article  Google Scholar 

  • Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250

    Article  Google Scholar 

  • Collins DP, Conway WC, Mason CD, Gunnels JW (2013) Seed bank potential of moist-soil managed wetlands in east-central Texas. Wetl Ecol Manag 21:353–366. doi:10.1007/s11273-013-9307-5

    Article  Google Scholar 

  • Day P, Deadman AJ, Greenwood BD, Greenwood EF (1982) A floristic appraisal of marl pits in parts of north-western England and northern Wales. Watsonia 14:153–165

    Google Scholar 

  • de Mendiburu F (2014) agricolae: statistical procedures for agricultural research. R package version 1.1-7

  • De Steven D, Sharitz RR, Singer JH, Barton CD (2006) Testing a passive revegetation approach for restoring coastal plain depression wetlands. Restor Ecol 14:452–460. doi:10.1111/j.1526-100X.2006.00153.x

    Article  Google Scholar 

  • Devictor V, Moret J, Machon N (2007) Impact of ploughing on soil seed bank dynamics in temporary pools. Plant Ecol 192:45–53

    Article  Google Scholar 

  • DWD (2014) Download of the long-term mean of temperature and precipitation (1981–2010). http://www.dwd.de. Accessed 27 Jan 2014

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–262

    Google Scholar 

  • Faist AM, Ferrenberg S, Collinge SK (2013) Banking on the past: seed banks as a reservoir for rare and native species in restored vernal pools. Aob Plants 5:plt043. doi:10.1093/aobpla/plt043

    Article  PubMed Central  Google Scholar 

  • Galatowitsch SM, van der Valk AG (1996) The vegetation of restored and natural prairie wetlands. Ecol Appl 6:102–112. doi:10.2307/2269557

    Article  Google Scholar 

  • Ghosn D, Vogiatzakis IN, Kazakis G, Dimitriou E, Moussoulis E, Maliaka V, Zacharias I (2010) Ecological changes in the highest temporary pond of western Crete (Greece): past, present and future. Hydrobiologia 648:3–18. doi:10.1007/s10750-010-0143-9

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Gruber S, Buehler A, Moehring J, Claupein W (2010) Sleepers in the soil—vertical distribution by tillage and long-term survival of oilseed rape seeds compared with plastic pellets. Eur J Agron 33:81–88. doi:10.1016/j.eja.2010.03.003

    Article  Google Scholar 

  • Harper JL (1987) Population Biology of Plants, 7th edn. Academic Press, London

    Google Scholar 

  • Hill M, Gauch H (1980) Detrended correspondence-analysis—an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hoffmann J (1996) Zwei Vorkommen von Schoenoplectus supinus (L.) Palla in Ostbrandenburg. Verh Bot Ver Berlin Brandenburg 129:85–96

    Google Scholar 

  • Hölzel N, Otte A (2004) Inter-annual variation in the soil seed bank of flood-meadows over two years with different flooding patterns. Plant Ecol 174:279–291. doi:10.1023/B:VEGE.0000049108.04955.e2

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the intergovernmental panel on climate change. Geneva

  • Kabus T, Mauersberger R (2011) Liste und Rote Liste der Armleuchteralgen (Characeae) des Landes Brandenburg. Natschutz Landschpfl Brandenburg 20:1–32

    Google Scholar 

  • Kappelle M, Van Vuuren MMI, Baas P (1999) Effects of climate change on biodiversity: a review and identification of key research issues. Biodivers Conserv 8:1383–1397. doi:10.1023/A:1008934324223

    Article  Google Scholar 

  • Keddy P, Ellis T (1985) Seedling recruitment of 11 wetland plant-species along a water level gradient—shared or distinct responses. Can J Bot-Rev Can Bot 63:1876–1879

    Google Scholar 

  • Keddy PA, Reznicek AA (1986) Great-lakes vegetation dynamics—the role of fluctuating water levels and buried seeds. J Great Lakes Res 12:25–36

    Article  Google Scholar 

  • Klafs G, Jeschke L, Schmidt H (1973) Genese und Systematik wasserführender Ackerhohlformen in den Nordbezirken der DDR. Arch Naturschutz Landschaftsforsch 13:287–302

    Google Scholar 

  • Kwon Y-S et al (2013) Evaluation of global warming effects on the geographical distribution of weeds in paddy fields by characterizing germination time and morphological factors. Ecol Inform 17:94–103. doi:10.1016/j.ecoinf.2013.06.007

    Article  Google Scholar 

  • Landesumweltamt BS (2006) Liste und Rote Liste der etablierten Gefäßpflanzen Brandenburg. Natschutz Landschpfl Brandenburg 15:1–163

    Google Scholar 

  • Lansdown RV (2014) The IUCN Red List of threatened species. Version 2015.2. www.iucnredlist.org. Accessed 08 July 2015

  • Lentz KA, Dunson WA (1999) Distinguishing characteristics of temporary pond habitat of endangered northeastern bulrush, Scirpus ancistrochaetus. Wetlands 19:162–167. doi:10.1007/BF03161745

    Article  Google Scholar 

  • Li H-L, Wang Y-Y, Zhang Q, Wang P, Zhang M-X, Yu F-H (2015) Vegetative propagule pressure and water depth affect biomass and evenness of submerged macrophyte communities. PloS One 10:e0142586–e0142586. doi:10.1371/journal.pone.0142586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig G, Schnittler M (1996) Rote Liste gefährdeter Pflanzen Deutschlands. Schriftenreihe Vegetationskunde 28:1–744

    Google Scholar 

  • Lukacs BA, Sramko G, Molnar A (2013) Plant diversity and conservation value of continental temporary pools. Biol Conserv 158:393–400. doi:10.1016/j.biocon.2012.08.024

    Article  Google Scholar 

  • Ma M (2005) Species richness vs evenness: independent relationship and different responses to edaphic factors. Oikos 111:192–198. doi:10.1111/j.0030-1299.2005.13049.x

    Article  Google Scholar 

  • Madsen H, Arnbjerg-Nielsen K, Mikkelsen PS (2009) Update of regional intensity-duration-frequency curves in Denmark: tendency towards increased storm intensities. Atmos Res 92:343–349. doi:10.1016/j.atmosres.2009.01.013

    Article  Google Scholar 

  • Mann H, Raju MVS (2002) First report of the rare charophyte Nitella macounii (T. F. Allen) T. F. Allen in Saskatchewan and western Canada. Can Field-Nat 116:559–570

    Google Scholar 

  • Matsuo K, Noguchi K, Nara M (1984) Ecological studies on Rorippa islandica (Oeder) Borb. 1. Dormancy and external conditions inducing seed germination. Weed Res (Japan) 29:220–225

    Google Scholar 

  • Meyer S, Wesche K, Krause B, Leuschner C (2013) Dramatic losses of specialist arable plants in Central Germany since the 1950s/60 s-a cross-regional analysis. Divers Distrib 19:1175–1187. doi:10.1111/ddi.12102

    Article  Google Scholar 

  • Oksanen J et al. (2013) vegan: Community Ecology Package. R package version 2.0–10

  • Olano JM, Caballero I, Escudero A (2012) Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann Bot 109:299–307. doi:10.1093/aob/mcr260

    Article  CAS  PubMed  Google Scholar 

  • Pinke G, Csiky J, Mesterhazy A, Tari L, Pal RW, Botta-Dukat Z, Czucz B (2014) The impact of management on weeds and aquatic plant communities in Hungarian rice crops. Weed Res 54:388–397. doi:10.1111/wre.12084

    Article  Google Scholar 

  • Pons T, Schröder H (1986) Significance of temperature-fluctuation and oxygen concentration for germination of the rice field weeds Fimbristylis littoralis and Scirpus juncoides. Oecologia 68:315–319. doi:10.1007/BF00384806

    Article  Google Scholar 

  • Poschlod P (1993) Underground floristics—keimfähige Diasporen im Boden als Beitrag zum floristischen Inventar einer Landschaft am Beispiel der Teichbodenflora. NuL 68:155–159

    Google Scholar 

  • Poschlod P, Böhringer J, Fennel S, Prume C, Tiekötter A (1999) Aspekte der Biologie und Ökologie von Arten der Zwergbinsenfluren. Mitt bad Landesver naturkunde u Naturschutz 17:219–260

    Google Scholar 

  • Pukacz A, Pelechaty M, Raabe U (2009) Pierwsze stanowisko Chara baueri (Characeae) w Polsce. Fragm Flor Geobot Pol 16:425–429

    Google Scholar 

  • R Core Team (2013) A language and environment for statistical computing, 3.0.2 edn. R Foundation for Statistical computing, Vienna

    Google Scholar 

  • Raabe U (2009) Chara baueri rediscovered in Germany—plus additional notes on Gustav Heinrich Bauer (1794–1888) and his herbarium. ICGC News 20:13–16

    Google Scholar 

  • Saatkamp A, Poschlod P, Venable DL (2014) The functional role of soil seed banks in natural communities. In: Gallagher RS (ed) Seeds: the ecology of regeneration in plant communities. CABI, Wallingford, pp 263–295

    Chapter  Google Scholar 

  • Slivitzky M (2002) Ecological impacts of water use and changes in levels and flows: a literature review. Great Lakes Commission, Ann Arbor

    Google Scholar 

  • Soininen J, Passy S, Hillebrand H (2012) The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems. Oecologia 169:803–809. doi:10.1007/s00442-011-2236-1

    Article  PubMed  Google Scholar 

  • Stirling G, Wilsey B (2001) Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158:286–299. doi:10.1086/321317

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. J Ecol 86:163–169. doi:10.1046/j.1365-2745.1998.00240.x

    Article  Google Scholar 

  • van Dijk J, Stroetenga M, van Bodegom PM, Aerts R (2007) The contribution of rewetting to vegetation restoration of degraded peat meadows. Appl Veg Sci 10:315

    Article  Google Scholar 

  • van Zanten BT et al (2014) European agricultural landscapes, common agricultural policy and ecosystem services: a review. Agron Sustain Dev 34:309–325. doi:10.1007/s13593-013-0183-4

    Article  Google Scholar 

  • von Lampe M (1996) Wuchsform, Wuchsrhythmus und Verbreitung der Arten der Zwergbinsengesellschaften. Diss Bot 266:1–353

    Google Scholar 

  • Weiher E, Keddy PA (1999) Relative abundance and evenness patterns along diversity and biomass gradients. Oikos 87:355–361. doi:10.2307/3546751

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology—lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Zacharias I, Zamparas M (2010) Mediterranean temporary ponds. A disappearing ecosystem. Biodivers Conserv 19:3827–3834. doi:10.1007/s10531-010-9933-7

    Article  Google Scholar 

Download references

Acknowledgments

We thank Philipp Glaab, Ingrid Kapps, Julia Prestele and the staff of the Botanical Garden of the University of Regensburg for help with installing and maintaining the experiment. Uwe Raabe identified the charophytes. Comments on a previous version of this article by three anonymous referees are gratefully acknowledged.

Funding

This work was funded by Deutsche Bundesstiftung Umwelt (Az 29 317–33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Altenfelder.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altenfelder, S., Schmitz, M., Poschlod, P. et al. Managing plant species diversity under fluctuating wetland conditions: the case of temporarily flooded depressions. Wetlands Ecol Manage 24, 597–608 (2016). https://doi.org/10.1007/s11273-016-9490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9490-2

Keywords

Navigation