Advertisement

Wetlands Ecology and Management

, Volume 24, Issue 2, pp 231–244 | Cite as

Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta

  • Vien Ngoc NamEmail author
  • Sigit D. SasmitoEmail author
  • Daniel Murdiyarso
  • Joko Purbopuspito
  • Richard A. MacKenzie
Original Paper

Abstract

Mangrove forests cover a small fraction of the earth’s surface, but contribute disproportionately to ecosystem services, including carbon (C) storage. These forests are being rapidly degraded as demand for economic development grows. In recognition of the multiple benefits of mangrove forests, rehabilitation of degraded forests is being carried out in many regions. This study assesses the potential for restored mangrove forests in Vietnam to sequester and store C, by characterizing two different mangrove restoration areas in the Mekong Delta region. The Can Gio Mangrove Biospheres Reserve (CGMBR) in Ho Chi Minh City was highly degraded during the Vietnam War and was subsequently replanted between 1978 and 1998. The Kien Vang Protection Forest (KVPF) in Ca Mau Province was similarly degraded during the war, but unlike CGMBR, it has experienced natural regeneration over the last 35 years. We find that vegetation structure between two sites are not different significantly, though CGMBR has richer mangrove species diversity than KVPF. The mean of total ecosystem C stocks in planted mangroves of CGMBR (889 ± 111 MgC ha−1) is not significantly different compare to natural regeneration forests of KVPF (844 ± 58 MgC ha−1). Our findings suggest that after 35 years, both anthropogenically and naturally regenerated mangroves appear to store similar levels of C.

Keywords

Blue carbon Climate mitigation Coastal management Ecosystem C stocks Hydro-geomorphic Restoration Vietnam 

Notes

Acknowledgments

The research was conducted under the Sustainable Wetland Adaptation and Mitigation Program (SWAMP), supported by the United States Agency for International Development (USAID) (MTO. 069018). We would like to thank the authorities of Can Gio District Peoples Committee, Can Gio Mangrove Biosphere Reserve of Ho Chi Minh City, Department of Agriculture and Rural Development of Ca Mau province and the KVPF Management Board who facilitated the collection of field data. We would like to thank Kemen Austin and Imam Basuki provided useful comments on the manuscript. This paper is number #25 in the SWAMP peer-reviewed publication series (www.cifor.org/swamp).

References

  1. Adame MF, Kauffman JB, Medina I et al (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One. doi: 10.1371/journal.pone.0056569 Google Scholar
  2. Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Manag 3:313–322. doi: 10.4155/Cmt.12.20 CrossRefGoogle Scholar
  3. Alongi DM (2014) Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 6:195–219. doi: 10.1146/annurev-marine-010213-135020 CrossRefPubMedGoogle Scholar
  4. Alongi D, Tirendi F, Clough B (2000) Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122. doi: 10.1016/S0304-3770(00)00110-8 CrossRefGoogle Scholar
  5. Bouillon S, Borges AV, Castañeda-Moya E et al (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:1–12. doi: 10.1029/2007gb003052 CrossRefGoogle Scholar
  6. Breithaupt JL, Smoak JM, Smith TJ et al (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob Biogeochem Cycles. doi: 10.1029/2012gb004375 Google Scholar
  7. Castaneda-Moya E, Twilley RR, Rivera-Monroy VH et al (2013) Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For Ecol Manag 307:226–241. doi: 10.1016/j.foreco.2013.07.011 CrossRefGoogle Scholar
  8. Chan HT, Cohen M (2014) Studies in Can Gio Mangrove Biosphere Reserve. International Society for Mangrove Ecosystems, Ho Chi Minh CityGoogle Scholar
  9. Clough BF, Scott K (1989) Allometric relationships for estimating above-ground biomass in six mangrove species. For Ecol Manag 27:117–127. doi: 10.1016/0378-1127(89)90034-0 CrossRefGoogle Scholar
  10. Comley BWT, McGuinness a K (2005) Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust J Bot 53:431–436. doi: 10.1071/BT04162 CrossRefGoogle Scholar
  11. de Graaf GJ, Xuan TT (1998) Extensive shrimp farming, mangrove clearance and marine fisheries in the southern provinces of Vietnam. Mangroves Salt Marshes 2:159–166. doi: 10.1023/A:1009975210487 CrossRefGoogle Scholar
  12. Donato DC, Kauffman JB, Murdiyarso D et al (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297. doi: 10.1038/ngeo1123 CrossRefGoogle Scholar
  13. Giri C, Zhu Z, Tieszen LL et al (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35:519–528. doi: 10.1111/j.1365-2699.2007.01806.x CrossRefGoogle Scholar
  14. Giri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. doi: 10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  15. Gross J, Flores EE, Schwendenmann L (2013) Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, Gulf of Monitjo Ramsar site, Pacific Coast, Panama. Wetlands 34:55–65. doi: 10.1007/s13157-013-0482-1 CrossRefGoogle Scholar
  16. Hayashi K, Miyagi T, Kitaya Y et al (2006) Geo-ecological rehabilitation process of the intensive damaged mangrove forest Can Gio Graduate School of Agriculture and Biological Sciences, Osaka Pre University, Sakai, Osaka. Faculty of Forestry Nong Lam University, Ho Chi Minh City, Thu Due DistrictGoogle Scholar
  17. Hong PN (2001) Reforestation of mangroves after severe impacts of herbicides during the Viet Nam war: the case of Can Gio. Unasylva 52:57–60Google Scholar
  18. Kauffman JB, Cole TG (2010) Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30:1077–1084. doi: 10.1007/s13157-010-0114-y CrossRefGoogle Scholar
  19. Kauffman JB, Donato D (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research (CIFOR), BogorGoogle Scholar
  20. Kauffman JB, Heider C, Cole TG et al (2011) Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31:343–352. doi: 10.1007/s13157-011-0148-9 CrossRefGoogle Scholar
  21. Kauffman JB, Hernandez Trejo H, del Carmen Jesus Garcia M et al (2015) Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla. Wetl Ecol Manag, Mexico. doi: 10.1007/s11273-015-9453-z Google Scholar
  22. Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21(04):471–477. doi: 10.1017/S0266467405002476 CrossRefGoogle Scholar
  23. Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137. doi: 10.1016/j.aquabot.2007.12.006 CrossRefGoogle Scholar
  24. Krauss KW, Cahoon DR, Allen JA et al (2010) Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific High Islands of Micronesia. Ecosystems 13:129–143. doi: 10.1007/s10021-009-9307-8 CrossRefGoogle Scholar
  25. Krauss KW, Mckee KL, Lovelock CE et al (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34. doi: 10.1111/nph.12605 CrossRefPubMedGoogle Scholar
  26. Kuenzer C, Tuan VQ (2013) Assessing the ecosystem services value of Can Gio mangrove biosphere reserve: combining earth-observation- and household-survey-based analyses. Appl Geogr 45:167–184. doi: 10.1016/j.apgeog.2013.08.012 CrossRefGoogle Scholar
  27. Lewis RR (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 24:403–418. doi: 10.1016/j.ecoleng.2004.10.003 CrossRefGoogle Scholar
  28. Lovelock CE, Adame MF, Bennion V et al (2013) Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and salt marshes of South East Queensland, Australia. Estuari Coasts 37:763–771. doi: 10.1007/s12237-013-9702-4 CrossRefGoogle Scholar
  29. Lovelock CE, Cahoon DR, Friess a D et al (2015) The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature. doi: 10.1038/nature15538 PubMedGoogle Scholar
  30. Mcleod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi: 10.1890/110004 CrossRefGoogle Scholar
  31. Mcnally R, McEwin A, Holland T (2011) The potential for mangrove carbon projects in Vietnam. SNV-Netherlands Development Organisation REDD+ Programme, Ha NoiGoogle Scholar
  32. Murdiyarso D, Donato D, Kauffman JB et al (2009) Carbon storage in mangrove and peatland ecosystems. A preliminary account from plots in Indonesia. Center for International Forestry Research (CIFOR), BogorGoogle Scholar
  33. Murdiyarso D, Kauffman JB, Verchot LV (2013) Climate change mitigation strategies should include tropical wetlands. Carbon Manag 4:491–499. doi: 10.4155/Cmt.13.46 CrossRefGoogle Scholar
  34. Murdiyarso D, Purbopuspito J, Kauffman JB et al (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Chang 5:1089–1092. doi: 10.1038/nclimate2734 CrossRefGoogle Scholar
  35. Nam VN, Jensen M (1993) Mangrove for production and protection. A changing resource system: case study in Can Gio District, Southern Vietnam. FAO, RomeGoogle Scholar
  36. Ong JE, Gong WK, Wong CH (2004) Allometry and partitioning of the mangrove, Rhizophora apiculata. For Ecol Manag 188:395–408. doi: 10.1016/j.foreco.2003.08.002 CrossRefGoogle Scholar
  37. Phang VXH, Chou LM, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, sea grass meadow, mudflat and sandbar. Earth Surf Process Landf. doi: 10.1002/esp.3745 Google Scholar
  38. Rahman AF, Dragoni D, Didan K et al (2013) Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens Environ 130:96–107. doi: 10.1016/j.rse.2012.11.014 CrossRefGoogle Scholar
  39. Ross P (1975) The mangroves of South Vietnam: the impact of military use of herbicides. In: Proceedings of the international symposium on biology and management of mangroves. Institute of Food and Agricultural Sciences, University of Florida, Gainesville pp 695–709Google Scholar
  40. Saintilan N, Rogers K, Mazumder D, Woodroffe C (2013) Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar Coast Shelf Sci 128:84–92. doi: 10.1016/j.ecss.2013.05.010 CrossRefGoogle Scholar
  41. Sasmito SD, Murdiyarso D, Friess DA, Kurnianto S (2015) Can mangroves keep pace with contemporary sea level rise? A global data review. Wetl Ecol Manag. doi: 10.1007/s11273-015-9466-7 Google Scholar
  42. Stringer CE, Trettin CC, Zarnoch SJ, Tang W (2015) Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. For Ecol Manag. doi: 10.1016/j.foreco.2015.06.027 Google Scholar
  43. Tamai S, Nakasuga T, Tabuchi R, Ogino K (1986) Standing biomass of mangrove forests in southern Thailand. J Japan For Soc 68:384–388Google Scholar
  44. Tong PHS, Auda Y, Populus J et al (2004) Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming. Int J Remote Sens 25:4795–4812. doi: 10.1080/01431160412331270858 CrossRefGoogle Scholar
  45. Tran Thi V, Tien Thi Xuan A, Phan Nguyen H et al (2014) Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences 11:3781–3795. doi: 10.5194/bg-11-3781-2014 CrossRefGoogle Scholar
  46. Tri NH, Hong PN, Van Nhuong D et al (2000) Valuation of the mangrove ecosystem in Can Gio Mangrove Biosphere Reserve, VietnamGoogle Scholar
  47. Tue NT, Dung LV, Nhuan MT, Omori K (2014) Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena 121:119–126. doi: 10.1016/j.catena.2014.05.008 CrossRefGoogle Scholar
  48. Woodroffe C (1993) Mangrove sediments and geomorphology. In: Robertson AI, Alongi DDM (eds) Tropical mangrove Ecosystem. American Geophysical Union, Washington, DC, pp 7–41Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Nong Lam UniversityHo Chi Minh CityVietnam
  2. 2.Center for International Forestry Research, Jalan CIFORBogorIndonesia
  3. 3.Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinAustralia
  4. 4.Department of Geophysics and MeteorologyBogor Agricultural UniversityBogorIndonesia
  5. 5.Department of Soil ScienceSam Ratulangi UniversityManadoIndonesia
  6. 6.Institute of Pacific Islands ForestryPacific Southwest Research Station, USDA Forest ServiceHiloUSA

Personalised recommendations