Wetlands Ecology and Management

, Volume 24, Issue 2, pp 263–278 | Cite as

Can mangroves keep pace with contemporary sea level rise? A global data review

  • Sigit D. SasmitoEmail author
  • Daniel Murdiyarso
  • Daniel A. Friess
  • Sofyan Kurnianto
Original Paper


Coastal vegetated wetlands such as mangrove forests provide multiple ecosystem services, though are potentially threatened by contemporary accelerated sea level rise (SLR), in addition to other immediate threats such as agriculture and coastal development. Several studies have revealed that mangroves are able to adapt to, and keep pace with local relative SLR through vertical surface elevation change (SEC), however data are lacking, with often only surface accretion rate (SAR) data available. We systematically review published studies of SEC and SAR from globally distributed monitoring sites using meta-analysis, and compare them with the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) SLR scenarios. Hydro-geomorphic setting plays an important role, with basin mangroves potentially less vulnerable to SLR through land building processes. We find that SAR in both basin and fringe mangroves can cope with low SLR scenario (RCP 2.6) throughout the 100 years projection period. However, SAR can only keep pace with high SLR scenario (RCP 8.5) up to year 2070 and 2055 in basin and fringe mangrove settings respectively. These were associated with potential sediment accumulation of 41 cm and 29 cm respectively from the baseline. Mangrove degradation promoted lowering trends of SEC, while mangrove management such as rehabilitation practice stimulated positive trends of SEC. Mangrove ecosystems may be vulnerable to contemporary SLR in small island locations such as the Caribbean, East Africa and parts of the Indo-Pacific that are dominated by fringe mangroves and where SEC cannot keep pace with both low and high IPCC AR5 SLR scenarios. A global expansion of current mangrove surface elevation monitoring effort is urgently needed in order to better assess the vulnerability of mangroves, and the factors affecting their resiliency in the face of rising sea levels.


Hydro-geomorphic Restoration Sediment availability Sediment deposition Surface elevation change Surface accretion Wetland 



This study is supported by the United States Agency for International Development (contract No. MTO 069018) to the Sustainable Wetlands Adaptation and Mitigation Program (SWAMP)—a collaborative activity between the Center for International Forestry Research (CIFOR) and the United States Forest Service (USFS)—International Program. DAF acknowledges the Department of Geography, National University of Singapore (R-109-000-141-133).

Supplementary material

11273_2015_9466_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 24 kb)


  1. Adame MF, Neil D, Wright SF, Lovelock CE (2010) Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuar Coast Shelf Sci 86(1):21–30CrossRefGoogle Scholar
  2. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13. doi: 10.1016/j.ecss.2007.08.024 CrossRefGoogle Scholar
  3. Balke T, Friess DA (2015) Geomorphic knowledge for mangrove restoration: a pan-tropical categorization. Earth Surf Proc Land. doi: 10.1002/esp.3841 Google Scholar
  4. Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142. doi: 10.1007/BF00196018 CrossRefGoogle Scholar
  5. Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. doi: 10.1890/10-1510.1 CrossRefGoogle Scholar
  6. Biostat (2011) Released 2011. Comprehensive meta-analysis, version 2.2.064. Biostat, EnglewoodGoogle Scholar
  7. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester doi: 10.1002/9780470743386
  8. Boumans RMJ, Day JW (1993) High-precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16:375–380. doi: 10.2307/1352509 CrossRefGoogle Scholar
  9. Cahoon DR (2006) A review of major storm impacts on coastal wetland elevations. Estuaries Coasts 29:889–898CrossRefGoogle Scholar
  10. Cahoon DR (2014) Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries Coasts. doi: 10.1007/s12237-014-9872-8 Google Scholar
  11. Cahoon DR, Lynch JC (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves Salt Marshes 1(3):173–186CrossRefGoogle Scholar
  12. Cahoon DR, Reed DJ, Day JW (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United-States—Kaye and Barghoorn revisited. Mar Geol 128:1–9. doi: 10.1016/0025-3227(95)00087-F CrossRefGoogle Scholar
  13. Cahoon DR, Lynch JC, Perez BC et al (2002) High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J Sediment Res 72:734–739. doi: 10.1306/020702720734 CrossRefGoogle Scholar
  14. Cahoon DR, Hensel P, Rybczyk J et al (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–1105. doi: 10.1046/j.1365-2745.2003.00841.x CrossRefGoogle Scholar
  15. Cahoon DR, Hensel PF, Spencer T et al (2006) Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In: Verhoeven JTA, Beltman D, Bobbink R, Whigham DF (eds) Wetlands and natural resource management: ecological studies. Springer, Berlin, pp 271–292CrossRefGoogle Scholar
  16. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173. doi: 10.1146/annurev-marine-120308-081105 CrossRefGoogle Scholar
  17. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602. doi: 10.1007/s10712-011-9119-1 CrossRefGoogle Scholar
  18. Darling ES, McClanahan TR, Côté IM (2010) Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv Lett 3(2):122–130CrossRefGoogle Scholar
  19. Day JW, Rybczyk J, Scarton F et al (1999) Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field and modelling approach. Estuar Coast Shelf Sci 49:607–628. doi: 10.1006/ecss.1999.0522 CrossRefGoogle Scholar
  20. Ellison JC (2014) Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl Ecol Manag. doi: 10.1007/s11273-014-9397-8 Google Scholar
  21. FAO (2007) The world’s mangroves 1980–2005. FAO For Pap 153:89Google Scholar
  22. Friess DA, Krauss KW, Horstman EM et al (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol Rev Camb Philos Soc 87:346–366. doi: 10.1111/j.1469-185X.2011.00198.x CrossRefPubMedGoogle Scholar
  23. Friess DA, Phelps J, Garmendia E, Gomes-Baggethun E (2015) Payments for Ecosystem Services (PES) in the face of external biophysical stressors. Glob Environ Change 30:31–42CrossRefGoogle Scholar
  24. Gilman E, Ellison J, Coleman R (2007) Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ Monit Assess 124:105–130. doi: 10.1007/s10661-006-9212-y CrossRefPubMedGoogle Scholar
  25. Giri C, Muhlhausen J (2008) Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 8(4):2104–2117CrossRefPubMedCentralGoogle Scholar
  26. Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35(3):519–528CrossRefGoogle Scholar
  27. Giri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. doi: 10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  28. Giri C, Long J, Abbas S, Murali RM, Qamer FM, Pengra B, Thau D (2015) Distribution and dynamics of mangrove forests of South Asia. J Environ Manage 148:101–111CrossRefPubMedGoogle Scholar
  29. Howe AJ, Rodríguez JF, Saco PM (2009) Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar Coast Shelf Sci 84:75–83. doi: 10.1016/j.ecss.2009.06.006 CrossRefGoogle Scholar
  30. Hutchinson J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7:233–240CrossRefGoogle Scholar
  31. IBM Corp. (2010) Released 2010. IBM SPSS Statistics for Windows, version 19.0. IBM Corp., ArmonkGoogle Scholar
  32. Ilstedt U, Malmer A, Verbeeten E, Murdiyarso D (2007) The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. For Ecol Manag 251:45–51. doi: 10.1016/j.foreco.2007.06.014 CrossRefGoogle Scholar
  33. Intergovernmental Panel on Climate Change (2013) Climate change: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  34. Jardine S, Siikamaki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9:104013CrossRefGoogle Scholar
  35. Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56:251–259. doi: 10.1016/s0272-7714(02)00184-1 CrossRefGoogle Scholar
  36. Krauss KW, Keeland BD, Allen JA et al (2007) Effects of season, rainfall, and hydro-geomorphic setting on mangrove tree growth in Micronesia. Biotropica 39(2):161–170CrossRefGoogle Scholar
  37. Krauss KW, Cahoon DR, Allen JA et al (2010) Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia. Ecosystems 13:129–143. doi: 10.1007/s10021-009-9307-8 CrossRefGoogle Scholar
  38. Krauss KW, Mckee KL, Lovelock CE et al (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34. doi: 10.1111/nph.12605 CrossRefPubMedGoogle Scholar
  39. Kumara MP, Jayatissa LP, Krauss KW et al (2010) High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164:545–553. doi: 10.1007/s00442-010-1705-2 CrossRefPubMedGoogle Scholar
  40. Lang’at JKS, Kairo JG, Mencuccini M et al (2014) Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE 9:e107868. doi: 10.1371/journal.pone.0107868 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lee SY, Primavera JH, Dahdouh-Guebas F et al (2014) Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–743. doi: 10.1111/geb.12155 CrossRefGoogle Scholar
  42. Lovelock CE, Sorrell BK, Hancock N et al (2010) Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3):437–451. doi: 10.1007/s10021-010-9329-2 CrossRefGoogle Scholar
  43. Lovelock CE, Bennion V, Grinham A, Cahoon DR (2011) The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14:745–757. doi: 10.1007/s10021-011-9443-9 CrossRefGoogle Scholar
  44. Lovelock CE, Adame MF, Bennion V et al (2013) Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of south east Queensland, Australia. Estuar Coasts 37:763–771. doi: 10.1007/s12237-013-9702-4 CrossRefGoogle Scholar
  45. Lovelock CE, Adame MF, Bennion V et al (2015) Sea level and turbidity controls on mangrove soil surface elevation change. Estuar Coast Shelf Sci 153:1–9. doi: 10.1016/j.ecss.2014.11.026 CrossRefGoogle Scholar
  46. Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64CrossRefGoogle Scholar
  47. McKee KL (2011) Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar Coast Shelf Sci 91:475–483. doi: 10.1016/j.ecss.2010.05.001 CrossRefGoogle Scholar
  48. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556. doi: 10.1111/j.1466-8238.2007.00317.x CrossRefGoogle Scholar
  49. Morris JT, Sundareshwar PV, Nietch CT et al (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877. doi: 10.2307/3072022 CrossRefGoogle Scholar
  50. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi: 10.1126/science.1185782 CrossRefPubMedGoogle Scholar
  51. Oliver TSN, Rogers K, Chafer CJ, Woodroffe CD (2012) Measuring, mapping and modelling: an integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetl Ecol Manag 20:353–371. doi: 10.1007/s11273-012-9258-2 CrossRefGoogle Scholar
  52. Primavera JH, Esteban JMA (2008) A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl Ecol Manag 16:345–358. doi: 10.1007/s11273-008-9101-y CrossRefGoogle Scholar
  53. Rogers K, Saintilan N, Cahoon D (2005) Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetl Ecol Manag 13:587–598. doi: 10.1007/s11273-004-0003-3 CrossRefGoogle Scholar
  54. Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuar Coast Shelf Sci 66:559–569. doi: 10.1016/j.ecss.2005.11.004 CrossRefGoogle Scholar
  55. Rogers K, Saintilan N, Woodroffe CD (2014) Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: implications for coastal wetland response to climate change. Estuar Coast Shelf Sci 149:46–56. doi: 10.1016/j.ecss.2014.07.009 CrossRefGoogle Scholar
  56. Spencer T, Friess DA, Moller I et al (2012) Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl Ecol Manag 20:9–33. doi: 10.1007/s11273-011-9238-y CrossRefGoogle Scholar
  57. Stokes DJ, Healy TR, Cooke PJ (2010) Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J Coast Res 261:113–122. doi: 10.2112/08-1043.1 CrossRefGoogle Scholar
  58. Watson JG (1928) Mangrove forests of the Malay Peninsula. Malayan Forest Records No. 6. Forest Department, Kuala LumpurGoogle Scholar
  59. Webb EL, Friess DA, Krauss KW et al (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Change 3:458–465. doi: 10.1038/nclimate1756 CrossRefGoogle Scholar
  60. Whelan KRT, Smith TJ, Cahoon DR et al (2005) Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries 28:833–843. doi: 10.1007/Bf02696013 CrossRefGoogle Scholar
  61. Whelan KRT, Smith TJ, Anderson GH, Ouellette ML (2009) Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29:16–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Center for International Forestry Research (CIFOR)BogorIndonesia
  2. 2.Department of Geophysics and MeteorologyBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of GeographyNational University of SingaporeSingaporeSingapore
  4. 4.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA

Personalised recommendations