Skip to main content

Advertisement

Log in

Responses of SOM decomposition to changing temperature in Zoige alpine wetland, China

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Alpine wetlands are considered to be very sensitive to future climate warming. Understanding changes in decomposition rates (Rs) of soil organic matter (SOM) and temperature sensitivity (Q 10) in alpine wetlands, under the scenarios of a warming climate and decreasing soil moisture, is important for predicting their carbon (C) budget. Here, we established three sampling transects from wetland edge to meadow in the Zoige alpine wetlands in China, which represented the gradients of decreasing soil moisture. We conducted an incubation experiment (5–25 °C) to explore changes in Q 10 with the degradation process from alpine wetland to alpine meadow. The results showed that temperature significantly influenced Rs in all locations. Rs first increased from site I to site IV and then decreased from site IV to site V. However, Q 10 and activation energy (E a ) showed no apparent trends with soil coming from sites along a moisture gradient. Overall, the Q 10 values in the wetland (sites 1.50) were significantly lower than that of the meadow (1.83); similar trends were observed for E a . In addition, E a exhibited a negative logarithmic relationship with C quality indices in all locations, which suggested that the C quality-temperature hypothesis is applicable to both alpine wetlands and meadows. These findings provide a theoretical foundation for predicting the potential influences of warming climate on soil C turnover and storage in alpine wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai JH, Lu QQ, Zhao QQ, Wang JJ, Ouyang H (2013) Effects of alpine wetland landscapes on regional climate on the Zoige plateau of China. Adv Meteorol. doi:10.1155/2013/972430

    Google Scholar 

  • Bauer J, Herbst M, Huisman JA, Weihermuller L, Vereecken H (2008) Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions. Geoderma 145:17–27

    Article  CAS  Google Scholar 

  • Bosatta E, Agren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891

    Article  CAS  Google Scholar 

  • Carrera N, Barreal ME, Rodeiro J, Briones MJI (2011) Interactive effects of temperature, soil moisture and enchytraeid activities on C losses from a peatland soil. Pedobiologia 54:291–299

    Article  Google Scholar 

  • Chen H, Wang M, Wu N, Wang YF, Zhu D, Gao YH, Peng CH (2011) Nitrous oxide fluxes from the littoral zone of a lake on the Qinghai-Tibetan Plateau. Environ Monit Assess 182:545–553

    Article  CAS  PubMed  Google Scholar 

  • Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89:2384–2391

    Article  PubMed  Google Scholar 

  • Conen F, Karhu K, Leifeld J, Seth B, Vanhala P, Liski J, Alewell C (2008) Temperature sensitivity of young and old soil carbon—same soil, slight differences in C−13 natural abundance method, inconsistent results. Soil Biol Biochem 40:2703–2705

    Article  CAS  Google Scholar 

  • Craine J, Spurr R, Mclauchlan K, Fierer N (2010a) Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol Biochem 42:373–375

    Article  CAS  Google Scholar 

  • Craine JM, Fierer N, Mclauchlan KK (2010b) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3:854–857

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn AMG, Butterbach-Bahl K (2010) Linking carbon and nitrogen mineralization with microbial responses to substrate availability—the DECONIT model. Plant Soil 328:271–290

    Article  CAS  Google Scholar 

  • Du BM, Kang HZ, Pumpanen J et al (2014) Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecol Res 29:433–439

    Article  CAS  Google Scholar 

  • Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  CAS  PubMed  Google Scholar 

  • Fei S, Cui L, He S, Chen X, Jiang J (2006) A background study of the wetland ecosystem research station in the Ruoergai plateau. J Sichuan For Sci Technol 27:21–29

    Google Scholar 

  • Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Change Biol 9:1322–1332

    Article  Google Scholar 

  • Fierer N, Craine JM, Mclauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob Biogeochem Cycles. doi:10.1029/2005GB002644

    Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymatic ‘latch’ on a global carbon store. Nature 409:149

    Article  CAS  PubMed  Google Scholar 

  • Froend JA (1999) Loss and degradation of wetlands in southwestern Australia underlying causes, consequences and solutions. Wetlands Ecol Manage 7:13–23

    Article  Google Scholar 

  • Gao JQ, Zhang F, Wang CM (2008) Distribution characteristics of soil libile carbon along water table gradient of alpine wetland soil. J Soil Water Conserv 22:126–131

    Google Scholar 

  • Gershenson A, Bader NE, Cheng WX (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob Change Biol 15:176–183

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Sigua JG, Kang WJ, Coleman SW (2004) Wetland conversion to beef cattle pasture changes in soil properties. J Soils Sediments 4:4–10

    Article  Google Scholar 

  • Gillabel J, Cebrian-Lopez B, Six J, Merckx R (2010) Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob Change Biol 16:2789–2798

    Article  Google Scholar 

  • Gillespie AW, Sanei H, Diochon A et al (2014) Perennially and annually frozen soil carbon differ in their susceptibility to decomposition: analysis of Subarctic earth hummocks by bioassay, XANES and pyrolysis. Soil Biol Biochem 68:106–116

    Article  CAS  Google Scholar 

  • Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013) Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem 58:115–126

    Article  CAS  Google Scholar 

  • Hart EA, Lovvorn JR (2000) Vegetation dynamics and primary production in saline, lacustrine wetlands of a Rocky Mountain basin. Aquat Bot 66:21–39

    Article  Google Scholar 

  • Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40:1567–1574

    Article  CAS  Google Scholar 

  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA et al (2009) No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (2008). Ecol Lett 12:E12–E14

    Article  PubMed  Google Scholar 

  • He NP, Wang RM, Gao Y, Dai JZ, Wen XF, Yu GR (2013) Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecol Evol 3:5045–5054

    Article  Google Scholar 

  • Huo L, Chen Z, Zou Y, Lu X, Guo J, Tang X (2013) Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecol Eng 51:287–295

    Article  Google Scholar 

  • Ise T, Dunn AL, Wofsy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–766

    Article  CAS  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Jin HJ, Yu QH, Lii LZ et al (2007) Degradation of permafrost in the Xing’anling Mountains, northeastern China. Permafrost Periglac Process 18:245–258

    Article  Google Scholar 

  • Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus Ser B Chem Phys Meteorol 55:642–648

    Article  Google Scholar 

  • Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  PubMed  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cycles. doi:10.1029/2007GB002983

    Google Scholar 

  • Lenton TM, Huntingford C (2003) Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob Change Biol 9:1333–1352

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Glob Change Biol 8:872–884

    Article  Google Scholar 

  • Rey A, Petsikos C, Jarvis PG, Grace J (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Sci 56:589–599

    Article  CAS  Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol Biochem 32:1935–1940

    Article  CAS  Google Scholar 

  • Shang W, Yang YX (2012) Degradation characteristics, patterns, and processess of lakeside wetland in Napahai of northwest Yunnan Plateau, Southwest China. Chin J Appl Ecol 23:3257–3265

    CAS  Google Scholar 

  • Sierra J, Brisson N, Ripoche D, Deque M (2010) Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario. Ecol Model 221:2850–2858

    Article  CAS  Google Scholar 

  • Tan YY, Wang X, Li CH, Cai YP, Yang ZF, Wang YL (2012) Estimation of ecological flow requirement in Zoige Alpine Wetland of southwest China. Environ Earth Sci 66:1525–1533

    Article  Google Scholar 

  • Tang J, Ding X, Wang LM et al (2012) Effects of wetland degradation on bacterial community in the Zoige Wetland of Qinghai-Tibetan Plateau (China). World J Microbiol Biotechnol 28:649–657

    Article  PubMed  Google Scholar 

  • Tian YB, Xiong MB, Gy Song (2004) Study on change of soil organic matter in the process of wetland ecological restoration in Ruoergai plateau. Wetland Sci 2:88–93

    Google Scholar 

  • Toberman H, Evans CD, Freeman C, Fenner N, White M, Emmett BA, Artz Rebekka RE (2008) Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol Biochem 40:1519–1532

  • Von Lutzow M, Kogel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Wang XW, Li XZ, Hu YM, Lv JJ, Sun J, Li ZM, Wu ZF (2010) Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing’an Mountains, Northeastern China. J Environ Sci China 22:1057–1066

    Article  PubMed  Google Scholar 

  • Wetterstedt JA, Persson T, Agren GI (2010) Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Glob Change Biol 16:1806–1819

    Article  Google Scholar 

  • Xiang W, Freeman C (2009) Annual variation of temperature sensitivity of soil organic carbon decomposition in North peatlands: implications for thermal responses of carbon cycling to global warming. Environ Geol 58:499–508

    Article  CAS  Google Scholar 

  • Xu X, Luo Y, Zhou J (2012) Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biol Biochem 50:142–148

    Article  CAS  Google Scholar 

  • Zhang Y, Wang GX, Wang YB (2011) Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environ Monit Assess 180:189–199

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Natural Science Foundation of China (31470506 and 31270519), and the Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research, CAS (2013RC102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxuan Zhang, Nianpeng He or Youmin Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Zhang, H., He, N. et al. Responses of SOM decomposition to changing temperature in Zoige alpine wetland, China. Wetlands Ecol Manage 23, 977–987 (2015). https://doi.org/10.1007/s11273-015-9434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-015-9434-2

Keywords

Navigation