Advertisement

Wetlands Ecology and Management

, Volume 23, Issue 5, pp 963–976 | Cite as

Mapping and spatial characterization of Argentine High Andean peatbogs

  • Andrea E. IzquierdoEmail author
  • Javier Foguet
  • H. Ricardo Grau
Original Paper

Abstract

Peatbogs are the most productive and biodiversity rich ecosystems of high dry Puna region, and provide essential ecosystems services to local inhabitants. Despite their ecological and economic importance, the geographic patterns and distribution of peatbogs as well the dynamic of this system are barely known. In this work we (1) identified and mapped subtropical Argentine High Andean peatbogs based in a supervised classification of Landsat images, and a posteriori spatial processing to define functional units; (2) used such classification to characterize the whole Argentina Puna region (14.3 million hectares) in terms of their geographic patterns of peatbogs; and (3) characterized the region’s sub-watersheds according to their peatbogs density and geographic characteristics. The post-process map reports a total area of peatbogs of 94427.55 ha (0.66 % of total study area) with 10,428 polygons. The majority of peatbogs are small or median (i.e., 21.8 % of total area included <10 ha, while 24.5 % of total area are peatbogs from 10 to 50 ha), but only two peatbogs with >10,000 ha represent 18 % of total area. Peatbogs density is spatially heterogeneous, with much higher density in the north and central east of the study area. Sub-watershed can be grouped into six main groups according to the percentage of peatbogs cover, mean size of peatbogs and altitude. The combination of basic information, such as map of peatbogs cover with spatial patterns characterization, is a priority input for the conservation planning of this extensive and valuable ecosystem, and to ongoing land use planning initiatives.

Keywords

Peatbogs High Andean wetlands GIS Landscape planning Puna 

Notes

Acknowledgments

This study was funded by CONICET and Grants from PICT2012-1565 FONCYT, PIUNT, FOCA-Galicia and Booster Rufford Foundation.

References

  1. Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol Manage 18:281–296CrossRefGoogle Scholar
  2. Baldassini P, Volante JN, Califano LM, Paruelo J (2012) Caracterización regional de la estructura y la productividad de la Puna mediante uso de imágenes Modis. Ecol Austral 22:2–32Google Scholar
  3. Beniston M, Diaz H, Bradley R (1997) Climatic change at high elevation sites. An overview. Clim Chang 36:233–251CrossRefGoogle Scholar
  4. Boyle TP, Caziani SM, Waltermire RG (2004) Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America. Wetl Ecol Manage 12(6):563–573CrossRefGoogle Scholar
  5. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Editorial Acme, Buenos AiresGoogle Scholar
  6. Cha S, Park C (2007) The utilization of Google earth images as reference data for the multitemporal land cover classification with MODIS data of North Korea. Korean J Remote Sens 23(5):483–491Google Scholar
  7. Domacx A, Suzen ML (2006) Integration of environmental variables with satellite images in regional scale vegetation classification. Int J Remote Sens 27:1329–1350CrossRefGoogle Scholar
  8. Grau HR, Aide TM (2007) Are rural–urban migration and sustainable development compatible in mountain systems? Mt Res Dev 27:119–123CrossRefGoogle Scholar
  9. Halloy SRP (1991) Islands of life at 6000 M Altitude—the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arct Alp Res 23:247–262CrossRefGoogle Scholar
  10. Herzog SK, Martínez R, Jorgensen PM, Tilesen H (eds) (2012) Cambio Climático y Biodiversidad de los Andes Tropicales. Instituto Interamericano para la Investigación del Cambio Global (IAI), Sao Jose dos Campos, y Comité Científico sobre Problemas del Medio Ambiente (SCOPE), Paris, p 426Google Scholar
  11. Izquierdo AE, Grau HR (2009) Agriculture adjustment, ecological transition and protected areas in Northwestern Argentina. J Environ Manage 90(2):858–865CrossRefPubMedGoogle Scholar
  12. Izquierdo AE, De Angelo CD, Aide TM (2008) Thirty years of human demography and land-use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecology and Society 13(2): 3 URL: http://www.ecologyandsociety.org/vol13/iss2/art3/
  13. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  14. Otto M, Scherer D, Richters J (2011) Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data. Hydrol Earth Syst Sci 15:1713–1727CrossRefGoogle Scholar
  15. Potere D (2008) Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive. Sensors 8(12):7973–7981. doi: 10.3390/s8127973 PubMedCentralCrossRefGoogle Scholar
  16. Reboratti C (2006) La situación ambiental en las ecoregiones Puna y Altos Andes. En Brown AD, Martínez Ortiz U, Acerbi M, Corcuera J (Eds). La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Buenos AiresGoogle Scholar
  17. Ruthsatz B (1993) Flora and ecological conditions ofhigh Andean peatlands of Chile between 18º00′ (Arica) and 40º30′ (Osorno) south latitude. Phytocoenologia 25:185–234Google Scholar
  18. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 12:1–12Google Scholar
  19. Squeo FA, Veit H, Arancio G, Gutierrez JR, Arroyo MTK, Olivares N (1993) Spatial heterogeneity of high mountain vegetation in the andean desert zone of Chile (30º S). Mt Res Dev 13:203–209CrossRefGoogle Scholar
  20. Squeo FA, Warner BG, Aravena R, Espinoza D (2006a) Bofedales: high altitude peatlands of the central Andes. Revista Chilena de Hist Nat 79:245–255Google Scholar
  21. Squeo FA, Tracol Y, López D, Gutierrez JR, Córdova AM, Ehleringer JR (2006b) ENSO effects on primary productivity in Southern Atacama desert. Adv Geosci 6:273–277CrossRefGoogle Scholar
  22. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi: 10.1029/2008JD011021 Google Scholar
  23. Villarroel EK, Pacheco PL, Mollinedo AI, Domic JM, Capriles C, Espinoza C (2014) Local Management of Andean Wetlands in Sajama National Park Bolivia. Mt Res Dev 34(4):356–368CrossRefGoogle Scholar
  24. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  25. Yang X (2007) Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. Int J Remote Sens 28:353–370CrossRefGoogle Scholar
  26. Yua L, Gong P (2012) Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens 33(12):3966–3986CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andrea E. Izquierdo
    • 1
    • 2
    Email author
  • Javier Foguet
    • 2
  • H. Ricardo Grau
    • 1
    • 2
  1. 1.CONICETBuenos AiresArgentina
  2. 2.Instituto de Ecología Regional-UNTSan Miguel de TucumánArgentina

Personalised recommendations