Skip to main content

A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts

Abstract

The Amazon River and its large tributaries are bordered by floodplains covering tens of thousands of square kilometers. Studies on the structure, function, and species composition have allowed a classification of the macrohabitats of Amazonian white-water floodplains, rich in suspended matter and nutrients and of neutral pH (várzea). Here we describe the use of a similar approach to classify the macrohabitats of the black-water floodplains, rich in humic substances, poor in nutrients and acidic (igapó) of the Negro River and its black-water tributaries. With 12 subclasses and 25 macrohabitats, the igapó is less complex than the várzea. Although white-water and black-water rivers are subjected to similar flood regimes, the low sediment load and shallower declivity of the Negro River lead to reduced sedimentation and erosion processes. Differences in nutrient levels between both ecosystems influence species composition, richness, and growth rates of higher plant communities. Species richness is lower in igapó than in várzea, and wood increment and litter production of igapó trees is about half that reported for várzea trees. In addition, igapó lacks highly productive herbaceous plant communities that are common in várzea. The classification of igapó macrohabitats provides a valuable tool for the elaboration of sustainable management strategies and conservation. While many várzea macrohabitats are suitable for small-scale agriculture, animal husbandry, forestry and commercial fisheries, the carrying capacity of igapó is limited and allows only for subsistence-level fishery and agriculture, the capture of ornamental fishes, and ecotourism. We argue that the biota of most igapó macrohabitats is highly sensitive to changes in hydrological cycles as caused by river damming and/or by climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adis J, Furch K, Irmler U (1979) Litter production of a central Amazonian inundation forest. J Trop Ecol 20:236–245

    Google Scholar 

  • Brightsmith D, Bravo A (2005) Ecology and management of nesting blue-and-yellow macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv 15:4271–4287

    Article  Google Scholar 

  • Coomes DA (1997) Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Can J For Res 27:831–839

    Google Scholar 

  • Curtis WF, Meade RH, Nordin CF, Price NB, Sholkovitz ER (1979) Non-uniform vertical distribution of fine sediments in the Amazon River. Nature 280:381–383

    Article  Google Scholar 

  • da Fonseca SF Jr, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees Struct Funct 23(1):127–134

    Article  Google Scholar 

  • Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodivers Conserv 6:1353–1363

    Article  Google Scholar 

  • Ferreira E, Zuanon J, Forsberg B, Goulding M, Briglia-Ferreira R (2007) Rio Branco: Peixes, ecologia e conservação de Roraima. Amazon Conservation Association (ACA), Instituto Nacional de Pesquisas da Amazônia (INPA), Sociedade Civil Mamirauá, Lima

  • Filizola N, Guyot JL (2009) Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol Process 23:3207–3215

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    CAS  Article  PubMed  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162

    Article  PubMed  Google Scholar 

  • Flores BM, Piedade MTF, Nelson BW (2012) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:1–9

    Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 47–68

    Chapter  Google Scholar 

  • Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, Leiden, pp 109–128

    Google Scholar 

  • Furch K, Junk WJ (1997) Physicochemical conditions in floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 69–108

    Chapter  Google Scholar 

  • Gibbs RJ (1967a) The geochemistry of the Amazon River system. I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78:1203–1232

    CAS  Article  Google Scholar 

  • Gibbs RJ (1967b) Amazon river: environmental factors that control its dissolved and suspended load. Science 156:1734–1737

    CAS  Article  PubMed  Google Scholar 

  • Goulding M, Cañas R, Barthem B, Forsberg B, Ortega H (2003) Amazon headwater: rivers, wildlife, and conservation in southeastern Peru. Asociaciòn para la Conservaciòn de la Cuenca Amazònica (ACCA), Lima

    Google Scholar 

  • Irion G, Junk WJ, de Mello JASN (1997) The large central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The central Amazon floodplain. Ecology of a pulsing system. Springer Verlag, Berlin, pp 23–46

    Chapter  Google Scholar 

  • Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (2010) Development of the Amazon valley during the middle to late Quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Ecology and management of Amazonian floodplain forests. Ecological Series. Springer Verlag, Berlin, pp 27–42

    Chapter  Google Scholar 

  • Junk WJ (2005) Flood Pulsing and the linkages between terrestrial, aquatic, and wetland systems. Proc Int Assoc Theor Appl Limnol 29(1):11–38

    Google Scholar 

  • Junk WJ, Piedade MTF (1993) Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana 12:467–484

    Google Scholar 

  • Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Their ecology and conservation. Cambridge University Press, Large Wetlands, pp 63–117

    Google Scholar 

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications—an update. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Volume 2. Food and Agriculture Organization & Mekong River Commission. RAP Publication 2004/16. FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–149

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Spec Publ Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzea). Wetl Ecol Manag 20:461–475

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchick L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv 24:5–22

    Article  Google Scholar 

  • Kalliola R, Salo J, Puhakka M, Rajasilta M (1992) Upper Amazon channel migration: implications for vegetation perturbance and succession using bitemporal Landsat MSS images. Naturwissenschaften 79:75–79

    Article  Google Scholar 

  • Klinge H, Herrera R (1978) Biomass studies in Amazon caatinga forest in southern Venezuela 1. Standing crop of composite root mass in selected stands. J Trop Ecol 19:93–110

    Google Scholar 

  • Klinge H, Medina E (1979) Rio Negro caatingas and campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Heathlands and related shrublands of the world. Elsevier Science Publishing, Amsterdam, pp 483–488

    Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304

    Article  Google Scholar 

  • Laraque A, Guyot JL, Filizola N (2009) Mixing processes in the Amazon River at the confluences of the Negro and Solimões Rivers, Encontro das Águas, Manaus, Brazil. Hydrol Process 23:3131–3140

    CAS  Article  Google Scholar 

  • Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101:130–145

    Article  Google Scholar 

  • Latrubesse EM, Franzinelli E (2005) The late Quaternary evolution of the Negro River, Amazon, Brazil: implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70:372–397

    Article  Google Scholar 

  • Marchetti ZY, Latrubesse EM, Pereira MS, Ramonell CG (2013) Vegetation and its relationships with geomorphologic units in the Parana River floodplain, Argentina. J S Am Earth Sci 46:122–136

    Article  Google Scholar 

  • Meade RH, Nordin CF, Curtis WF, Mahoney HA, Delaney BM (1979a) Suspended-sediment and velocity data, Amazon River and its tributaries June–July 1976 and May–June 1977. US Geol Surv 79–515:42

    Google Scholar 

  • Meade RH, Nordin CF, Curtis WF, Rodriguez FMC, Vale RM, Edmond JM (1979b) Sediment loads in the Amazon river. Nature 278:161–163

    Article  Google Scholar 

  • Meade RH, Rayol JM, Da Conceicao SC, Natividade JRG (1991) Backwater effects in the Amzon River basin of Brazil. Environ Geol Water Sci 18:105–114

    Article  Google Scholar 

  • Medina E, García V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rainforest of the upper Negro region. Biotropica 22(1):51–64

    Article  Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazon floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies 210. Springer Verlag, Berlin, pp 43–59

    Chapter  Google Scholar 

  • Mertes LAK, Smith MO, Adams JB (1993) Estimating suspended sediment concentrations in surface water of the Amazon river wetlands from Landsat images. Remote Sens Eviron 43:281–301

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Article  Google Scholar 

  • Molinier M, Guyot JL, de Oliveira E, Guimaraes V, Chaves A (1995) Hydrologie du bassin de l’Amazone. Grands Bassins Fluviaux Périatlantiques. PEGI, Paris, pp 335–344

    Google Scholar 

  • Montero JC, Latrubesse EM (2013) The igapó of the Negro River in central Amazonia: linking late-successional inundation forest with fluvial geomorphology. J S Am Earth Sci 46:137–149

    Article  Google Scholar 

  • Montero JC, Piedade MTF, Wittmann F (2014) Floristic variation across 600 km of inundation forests (Igapó) along the Negro River, central Amazonia. Hydrobiologia 729:229–246

    CAS  Article  Google Scholar 

  • Mori S (2001) A Família da Castanha-do-Pará: Símbolo do Rio Negro. In: Oliveira AA, Daly DC (eds) Florestas do Rio Negro. UNIP, NYBG e Companhia das Letras, São Paulo, pp 119–142

    Google Scholar 

  • Nunes da Cunha C, Junk WJ (2011) A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international classification systems. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft, Sofia-Moscow, pp 127–142

    Google Scholar 

  • Peixoto JMA, Nelson BW, Wittmann F (2009) Spatial and temporal dynamics of alluvial geomorphology and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens Environ 113:2258–2266

    Article  Google Scholar 

  • Petts GE, Amoros C (1996) Fluvial hydrosystems. Chapman and Hall, London

    Book  Google Scholar 

  • Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72(4):1456–1991

    Article  Google Scholar 

  • Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Rev Biol Trop 54:1171–1178

    Article  PubMed  Google Scholar 

  • Piedade MTF, Schöngart J, Wittmann F, Parolin P, Junk WJ (2013) Impactos da inundação e seca na vegetação de áreas alagáveis amazônicas. In: Borma LS, Nobre C (eds) Secas na Amazônia: causas e conseqüências. Oficina de Textos, São Paulo, pp 268–305

    Google Scholar 

  • Prance GT (1975) Estudos sobre a vegetação das Campinas Amazônicas—I. Introdução a uma série de publicações sobre a vegetação das Campinas Amazônicas. Acta Amaz 5:207–209

    Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38

    Article  Google Scholar 

  • Rutchey K, Schall TN, Doren RF, Atkinson A, Ross, Jones DT, Madden M, Vilchek L, Bradley KA, Snyder JR, Burch JN, Pernas T, Witcher B, Pyne M, White R, Smith TJ III, Sadle J, Smith CS, Patterson ME, Gann GD (2006) Vegetation classification for South Florida natural areas. United States Geological Survey, Saint Petersburg (Open-File Report 2006-1240)

    Google Scholar 

  • Salo J, Kalliola R, Häkkinen I, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of the Amazon lowland forest. Nature 322:254–258

    Article  Google Scholar 

  • Scabin A, Costa F, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas Archipelago (Central Amazonia) and logging impacts on the primary timber species. Environ Conserv 39:111–121

    Article  Google Scholar 

  • Schlüter U-B, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of central Amazonia. Biotropica 25:384–396

    Article  Google Scholar 

  • Schmidt GW (1972) Amounts of suspended solids and dissolved substances in the middle reaches of the Amazon over the course of one year (August 1969–July 1970). Amazoniana 3:208–223

    Google Scholar 

  • Schöngart J (2010) Growth-oriented logging (GOL): a new concept for an ecologically sustainable forest management in central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Berlin, pp 437–462

    Chapter  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    Article  PubMed  Google Scholar 

  • Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10(2):89–109

    Google Scholar 

  • Stadtler EWC (2007) Estimativas de biomassa lenhosa, estoque e seqüestro de carbono acima do solo ao longo do gradiente de inundação em uma floresta de igapó alagada por água preta na Amazônia Central, M.Sc. Thesis, National Institute for Amazon Research, Brazil, p 57

  • Stropp J, Van der Sleen P, Assunção PA, Silva AL, ter Steege H (2011) Tree communities of white-sand and terra firme forests of the upper Rio Negro. Acta Amazonica 41:521–544

    Article  Google Scholar 

  • Tobler M, Janovec JP, Cornejo F (2009) Frugivory and seed dispersal by the lowland Tapir (Tapirus terrestris) in the Peruvian Amazon. Biotropica 42:215–222

    Article  Google Scholar 

  • Veloso HP, Rangel Filho ARL, Lima JCA (1991) Classificação da Vegetação Brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Villamizar EAR (2013) Química da água para a classificação dos rios e igarapés da bacia amazônica. Ph.D. thesis, InstitutoNacional de Pesquisas da Amazônia (INPA) and Universidade Estadual do Amazonas (UEA), Manaus

  • Wantzen KM, Drago E, da Silva CJ (2005) Aquatic habitats of the upper paraguay river-floodplain-system and parts of the Pantanal. Ecohydrol Hydrobiol 5:107–126

    Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr 33:1334–1347

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazon floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies 210. Springer Verlag, Berlin, pp 61–102

    Chapter  Google Scholar 

  • Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ (2013) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707

    Article  Google Scholar 

  • Worbes M (1997) The Forest Ecosystem of the Floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies. Springer Verlag, Berlin, pp 223–265

    Chapter  Google Scholar 

Download references

Acknowledgments

We wish to thank the National Institute for Amazonian Research (INPA) for assistance. Field work in Brazil was made possible by financial support from the INPA/Max Planck Project Manaus, the Brazilian Council of Science and Technology – CNPq (Universal 479599/2008-4 and 479335/2011-7), PRONEX – FAPEAM – CNPq (“Tipologias alagáveis”, 1436/2007), PELD-FAPEAM 034/2012, and LBA-457893/2013-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Wittmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junk, W.J., Wittmann, F., Schöngart, J. et al. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manage 23, 677–693 (2015). https://doi.org/10.1007/s11273-015-9412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-015-9412-8

Keywords

  • Amazonian wetlands
  • Negro River floodplain
  • Classification
  • Higher plants
  • Species richness
  • Productivity