Wetlands Ecology and Management

, Volume 23, Issue 4, pp 677–693 | Cite as

A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts

  • Wolfgang J. Junk
  • Florian Wittmann
  • Jochen Schöngart
  • Maria T. F. Piedade
Original Paper


The Amazon River and its large tributaries are bordered by floodplains covering tens of thousands of square kilometers. Studies on the structure, function, and species composition have allowed a classification of the macrohabitats of Amazonian white-water floodplains, rich in suspended matter and nutrients and of neutral pH (várzea). Here we describe the use of a similar approach to classify the macrohabitats of the black-water floodplains, rich in humic substances, poor in nutrients and acidic (igapó) of the Negro River and its black-water tributaries. With 12 subclasses and 25 macrohabitats, the igapó is less complex than the várzea. Although white-water and black-water rivers are subjected to similar flood regimes, the low sediment load and shallower declivity of the Negro River lead to reduced sedimentation and erosion processes. Differences in nutrient levels between both ecosystems influence species composition, richness, and growth rates of higher plant communities. Species richness is lower in igapó than in várzea, and wood increment and litter production of igapó trees is about half that reported for várzea trees. In addition, igapó lacks highly productive herbaceous plant communities that are common in várzea. The classification of igapó macrohabitats provides a valuable tool for the elaboration of sustainable management strategies and conservation. While many várzea macrohabitats are suitable for small-scale agriculture, animal husbandry, forestry and commercial fisheries, the carrying capacity of igapó is limited and allows only for subsistence-level fishery and agriculture, the capture of ornamental fishes, and ecotourism. We argue that the biota of most igapó macrohabitats is highly sensitive to changes in hydrological cycles as caused by river damming and/or by climate change.


Amazonian wetlands Negro River floodplain Classification Higher plants Species richness Productivity 



We wish to thank the National Institute for Amazonian Research (INPA) for assistance. Field work in Brazil was made possible by financial support from the INPA/Max Planck Project Manaus, the Brazilian Council of Science and Technology – CNPq (Universal 479599/2008-4 and 479335/2011-7), PRONEX – FAPEAM – CNPq (“Tipologias alagáveis”, 1436/2007), PELD-FAPEAM 034/2012, and LBA-457893/2013-3.


  1. Adis J, Furch K, Irmler U (1979) Litter production of a central Amazonian inundation forest. J Trop Ecol 20:236–245Google Scholar
  2. Brightsmith D, Bravo A (2005) Ecology and management of nesting blue-and-yellow macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv 15:4271–4287CrossRefGoogle Scholar
  3. Coomes DA (1997) Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Can J For Res 27:831–839Google Scholar
  4. Curtis WF, Meade RH, Nordin CF, Price NB, Sholkovitz ER (1979) Non-uniform vertical distribution of fine sediments in the Amazon River. Nature 280:381–383CrossRefGoogle Scholar
  5. da Fonseca SF Jr, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees Struct Funct 23(1):127–134CrossRefGoogle Scholar
  6. Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodivers Conserv 6:1353–1363CrossRefGoogle Scholar
  7. Ferreira E, Zuanon J, Forsberg B, Goulding M, Briglia-Ferreira R (2007) Rio Branco: Peixes, ecologia e conservação de Roraima. Amazon Conservation Association (ACA), Instituto Nacional de Pesquisas da Amazônia (INPA), Sociedade Civil Mamirauá, LimaGoogle Scholar
  8. Filizola N, Guyot JL (2009) Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol Process 23:3207–3215CrossRefGoogle Scholar
  9. Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665CrossRefPubMedGoogle Scholar
  10. Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162CrossRefPubMedGoogle Scholar
  11. Flores BM, Piedade MTF, Nelson BW (2012) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:1–9Google Scholar
  12. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 47–68CrossRefGoogle Scholar
  13. Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, Leiden, pp 109–128Google Scholar
  14. Furch K, Junk WJ (1997) Physicochemical conditions in floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 69–108CrossRefGoogle Scholar
  15. Gibbs RJ (1967a) The geochemistry of the Amazon River system. I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78:1203–1232CrossRefGoogle Scholar
  16. Gibbs RJ (1967b) Amazon river: environmental factors that control its dissolved and suspended load. Science 156:1734–1737CrossRefPubMedGoogle Scholar
  17. Goulding M, Cañas R, Barthem B, Forsberg B, Ortega H (2003) Amazon headwater: rivers, wildlife, and conservation in southeastern Peru. Asociaciòn para la Conservaciòn de la Cuenca Amazònica (ACCA), LimaGoogle Scholar
  18. Irion G, Junk WJ, de Mello JASN (1997) The large central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The central Amazon floodplain. Ecology of a pulsing system. Springer Verlag, Berlin, pp 23–46CrossRefGoogle Scholar
  19. Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (2010) Development of the Amazon valley during the middle to late Quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Ecology and management of Amazonian floodplain forests. Ecological Series. Springer Verlag, Berlin, pp 27–42CrossRefGoogle Scholar
  20. Junk WJ (2005) Flood Pulsing and the linkages between terrestrial, aquatic, and wetland systems. Proc Int Assoc Theor Appl Limnol 29(1):11–38Google Scholar
  21. Junk WJ, Piedade MTF (1993) Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana 12:467–484Google Scholar
  22. Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Their ecology and conservation. Cambridge University Press, Large Wetlands, pp 63–117Google Scholar
  23. Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications—an update. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Volume 2. Food and Agriculture Organization & Mekong River Commission. RAP Publication 2004/16. FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–149Google Scholar
  24. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Spec Publ Can J Fish Aquat Sci 106:110–127Google Scholar
  25. Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640CrossRefGoogle Scholar
  26. Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzea). Wetl Ecol Manag 20:461–475CrossRefGoogle Scholar
  27. Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchick L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv 24:5–22CrossRefGoogle Scholar
  28. Kalliola R, Salo J, Puhakka M, Rajasilta M (1992) Upper Amazon channel migration: implications for vegetation perturbance and succession using bitemporal Landsat MSS images. Naturwissenschaften 79:75–79CrossRefGoogle Scholar
  29. Klinge H, Herrera R (1978) Biomass studies in Amazon caatinga forest in southern Venezuela 1. Standing crop of composite root mass in selected stands. J Trop Ecol 19:93–110Google Scholar
  30. Klinge H, Medina E (1979) Rio Negro caatingas and campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Heathlands and related shrublands of the world. Elsevier Science Publishing, Amsterdam, pp 483–488Google Scholar
  31. Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304CrossRefGoogle Scholar
  32. Laraque A, Guyot JL, Filizola N (2009) Mixing processes in the Amazon River at the confluences of the Negro and Solimões Rivers, Encontro das Águas, Manaus, Brazil. Hydrol Process 23:3131–3140CrossRefGoogle Scholar
  33. Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101:130–145CrossRefGoogle Scholar
  34. Latrubesse EM, Franzinelli E (2005) The late Quaternary evolution of the Negro River, Amazon, Brazil: implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70:372–397CrossRefGoogle Scholar
  35. Marchetti ZY, Latrubesse EM, Pereira MS, Ramonell CG (2013) Vegetation and its relationships with geomorphologic units in the Parana River floodplain, Argentina. J S Am Earth Sci 46:122–136CrossRefGoogle Scholar
  36. Meade RH, Nordin CF, Curtis WF, Mahoney HA, Delaney BM (1979a) Suspended-sediment and velocity data, Amazon River and its tributaries June–July 1976 and May–June 1977. US Geol Surv 79–515:42Google Scholar
  37. Meade RH, Nordin CF, Curtis WF, Rodriguez FMC, Vale RM, Edmond JM (1979b) Sediment loads in the Amazon river. Nature 278:161–163CrossRefGoogle Scholar
  38. Meade RH, Rayol JM, Da Conceicao SC, Natividade JRG (1991) Backwater effects in the Amzon River basin of Brazil. Environ Geol Water Sci 18:105–114CrossRefGoogle Scholar
  39. Medina E, García V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rainforest of the upper Negro region. Biotropica 22(1):51–64CrossRefGoogle Scholar
  40. Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazon floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies 210. Springer Verlag, Berlin, pp 43–59CrossRefGoogle Scholar
  41. Mertes LAK, Smith MO, Adams JB (1993) Estimating suspended sediment concentrations in surface water of the Amazon river wetlands from Landsat images. Remote Sens Eviron 43:281–301CrossRefGoogle Scholar
  42. Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33CrossRefGoogle Scholar
  43. Molinier M, Guyot JL, de Oliveira E, Guimaraes V, Chaves A (1995) Hydrologie du bassin de l’Amazone. Grands Bassins Fluviaux Périatlantiques. PEGI, Paris, pp 335–344Google Scholar
  44. Montero JC, Latrubesse EM (2013) The igapó of the Negro River in central Amazonia: linking late-successional inundation forest with fluvial geomorphology. J S Am Earth Sci 46:137–149CrossRefGoogle Scholar
  45. Montero JC, Piedade MTF, Wittmann F (2014) Floristic variation across 600 km of inundation forests (Igapó) along the Negro River, central Amazonia. Hydrobiologia 729:229–246CrossRefGoogle Scholar
  46. Mori S (2001) A Família da Castanha-do-Pará: Símbolo do Rio Negro. In: Oliveira AA, Daly DC (eds) Florestas do Rio Negro. UNIP, NYBG e Companhia das Letras, São Paulo, pp 119–142Google Scholar
  47. Nunes da Cunha C, Junk WJ (2011) A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international classification systems. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft, Sofia-Moscow, pp 127–142Google Scholar
  48. Peixoto JMA, Nelson BW, Wittmann F (2009) Spatial and temporal dynamics of alluvial geomorphology and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens Environ 113:2258–2266CrossRefGoogle Scholar
  49. Petts GE, Amoros C (1996) Fluvial hydrosystems. Chapman and Hall, LondonCrossRefGoogle Scholar
  50. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72(4):1456–1991CrossRefGoogle Scholar
  51. Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Rev Biol Trop 54:1171–1178CrossRefPubMedGoogle Scholar
  52. Piedade MTF, Schöngart J, Wittmann F, Parolin P, Junk WJ (2013) Impactos da inundação e seca na vegetação de áreas alagáveis amazônicas. In: Borma LS, Nobre C (eds) Secas na Amazônia: causas e conseqüências. Oficina de Textos, São Paulo, pp 268–305Google Scholar
  53. Prance GT (1975) Estudos sobre a vegetação das Campinas Amazônicas—I. Introdução a uma série de publicações sobre a vegetação das Campinas Amazônicas. Acta Amaz 5:207–209Google Scholar
  54. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  55. Rutchey K, Schall TN, Doren RF, Atkinson A, Ross, Jones DT, Madden M, Vilchek L, Bradley KA, Snyder JR, Burch JN, Pernas T, Witcher B, Pyne M, White R, Smith TJ III, Sadle J, Smith CS, Patterson ME, Gann GD (2006) Vegetation classification for South Florida natural areas. United States Geological Survey, Saint Petersburg (Open-File Report 2006-1240)Google Scholar
  56. Salo J, Kalliola R, Häkkinen I, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of the Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  57. Scabin A, Costa F, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas Archipelago (Central Amazonia) and logging impacts on the primary timber species. Environ Conserv 39:111–121CrossRefGoogle Scholar
  58. Schlüter U-B, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of central Amazonia. Biotropica 25:384–396CrossRefGoogle Scholar
  59. Schmidt GW (1972) Amounts of suspended solids and dissolved substances in the middle reaches of the Amazon over the course of one year (August 1969–July 1970). Amazoniana 3:208–223Google Scholar
  60. Schöngart J (2010) Growth-oriented logging (GOL): a new concept for an ecologically sustainable forest management in central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Berlin, pp 437–462CrossRefGoogle Scholar
  61. Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461CrossRefPubMedGoogle Scholar
  62. Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10(2):89–109Google Scholar
  63. Stadtler EWC (2007) Estimativas de biomassa lenhosa, estoque e seqüestro de carbono acima do solo ao longo do gradiente de inundação em uma floresta de igapó alagada por água preta na Amazônia Central, M.Sc. Thesis, National Institute for Amazon Research, Brazil, p 57Google Scholar
  64. Stropp J, Van der Sleen P, Assunção PA, Silva AL, ter Steege H (2011) Tree communities of white-sand and terra firme forests of the upper Rio Negro. Acta Amazonica 41:521–544CrossRefGoogle Scholar
  65. Tobler M, Janovec JP, Cornejo F (2009) Frugivory and seed dispersal by the lowland Tapir (Tapirus terrestris) in the Peruvian Amazon. Biotropica 42:215–222CrossRefGoogle Scholar
  66. Veloso HP, Rangel Filho ARL, Lima JCA (1991) Classificação da Vegetação Brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  67. Villamizar EAR (2013) Química da água para a classificação dos rios e igarapés da bacia amazônica. Ph.D. thesis, InstitutoNacional de Pesquisas da Amazônia (INPA) and Universidade Estadual do Amazonas (UEA), ManausGoogle Scholar
  68. Wantzen KM, Drago E, da Silva CJ (2005) Aquatic habitats of the upper paraguay river-floodplain-system and parts of the Pantanal. Ecohydrol Hydrobiol 5:107–126Google Scholar
  69. Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  70. Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazon floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies 210. Springer Verlag, Berlin, pp 61–102CrossRefGoogle Scholar
  71. Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ (2013) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707CrossRefGoogle Scholar
  72. Worbes M (1997) The Forest Ecosystem of the Floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Ecological studies. Springer Verlag, Berlin, pp 223–265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wolfgang J. Junk
    • 1
  • Florian Wittmann
    • 2
  • Jochen Schöngart
    • 3
  • Maria T. F. Piedade
    • 3
  1. 1.Instituto Nacional de Ciência e Tecnologia em Áreas ÚmidasUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Department of BiogeochemistryMax Planck Institute for ChemistryMainzGermany
  3. 3.Grupo MAUAInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations