Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165
CAS
Article
Google Scholar
Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539. doi:10.2307/3545942
Article
Google Scholar
Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond B Biol Sci 268:1315–1321. doi:10.1098/rspb.2001.1665
CAS
Article
Google Scholar
Bönsel A, Sonneck AG (2011) Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008. Wetl Ecol Manag 19:183–194. doi:10.1007/s11273-011-9210-x
Article
Google Scholar
Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916. doi:10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
Cagampan JP, Waddington JM (2008a) Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm. Ecoscience 15:258–267. doi:10.2980/15-2-3054
Article
Google Scholar
Cagampan JP, Waddington JM (2008b) Moisture dynamics and hydrophysical properties of a transplanted acrotelm on a cutover peatland. Hydrol Process 22:1776–1787. doi:10.1002/hyp.6802
Article
Google Scholar
Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49. doi:10.2307/2258168
Article
Google Scholar
Cooper MDA, Evans CD, Zielinski P, Levy PE, Gray A, Peacock M, Norris D, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland re-wetting. Ecosystems 17:1227–1241. doi:10.1007/s10021-014-9791-3
CAS
Article
Google Scholar
Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326. doi:10.1016/0038-0717(93)90130-4
CAS
Article
Google Scholar
Elling AE, Knighton MD (1984) Sphagnum moss recovery after harvest in a Minnesota bog. J Soil Water Conserv 39:209–211
Google Scholar
Environment Canada (2014a) Greenhouse Gas Sources and Sinks in Canada. National Inventory Report 1990–2012. Government of Canada. http://www.ec.gc.ca/ges-ghg/default.asp?/lang=En&n=1357A041–1. Accessed 20 June 2014
Environment Canada (2014b) Historical Climate Database. http://climate.weather.gc.ca/index_e.html. Accessed 11 Dec 2014
Environmental Commissioner of Ontario (2005) 2004–2005 Annual Report. Environmental Commissioner of Ontario, Toronto
Ferland C, Rochefort L (1997) Restoration techniques for Sphagnum-dominated peatlands. Can J Bot 75:1110–1118. doi:10.1139/b97-122
Article
Google Scholar
Glatzel S, Kalbitz K, Dalva M, Moore TR (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113:397–411. doi:10.1016/S0016-7061(02)00372-5
CAS
Article
Google Scholar
Glatzel S, Basiliko N, Moore TR (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267. doi:10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2
Gleeson J, Zeller A, McLaughlin JW (2006) Peat as a Fuel Source in Ontario: A Preliminary Literature Review. Forest Research Information Paper. Ontario Forest Research Institute, Sault Ste Marie
Google Scholar
González E, Rochefort L (2014) Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol Eng 68:279–290. doi:10.1016/j.ecoleng.2014.03.051
Article
Google Scholar
González E, Rochefort L, Poulin M (2013) Trajectories of plant recovery in block-cut peatlands 35 years after peat extraction. Appl Ecol Environ Res 11:385–406
Article
Google Scholar
Graf MD, Bérubé V, Rochefort L (2012) Restoration of peatlands after peat extraction: Impacts, restoration goals, and techniques. In: Vitt DH, Bhatti JS (eds) Restoration and Reclamation of Boreal Ecosystems. Cambridge University Press, Cambridge, pp 259–280
Chapter
Google Scholar
Howley M, Holland M (2013) Energy in Ireland 1990–2012. Sustainable Energy Authority of Ireland 2013 Report. http://www.seai.ie/Publications/Statistics_Publications/Energy_in_Ireland/Energy_in_Ireland_1990_-_2012_Report.pdf. Accessed 18 June 2014
Joosten H, Clarke D (2002) Wise Use of Mires and Peatlands. International Mire Conservation Group and International Peat Society, Devon
Google Scholar
Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water Air Soil Pollut 141:263–272. doi:10.1023/A:1021324326859
CAS
Article
Google Scholar
Landry T, Rochefort L, Poulin M (2012) Impact of seedbed and water level on the establishment of plant species associated with bog pools: implications for restoration. Native Plants J 13:205–215
Google Scholar
Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi:10.5194/bg-8-3203-2011
CAS
Article
Google Scholar
Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738. doi:10.5194/bg-7-2711-2010
CAS
Article
Google Scholar
Marinier M, Glatzel S, Moore TR (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 11:141–149
Google Scholar
McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367. doi:10.1046/j.1365-2664.2003.00790.x
Article
Google Scholar
Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664. doi:10.1111/j.1365-2389.1993.tb02330.x
CAS
Article
Google Scholar
Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740
Google Scholar
Nilsson K, Nilsson M (2004) The climate impacts of energy peat utilisation in Sweden–the effect of former land-use and after-treatment. IVL Swedish Environmental Research Institute, Report B1606, Stockholm, pp 92
Nykänen H, Alm J, Lang K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357. doi:10.2307/2845930
Article
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 23 June 2014
Petrone RM, Waddington JM, Price JS (2001) Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol Process 15:2839–2845. doi:10.1002/hyp.475
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117
Pouliot R, Rochefort L, Karofeld E (2011) Initiation of microtopography in revegetated cutover peatlands. Appl Veg Sci 14:158–171. doi:10.1111/j.1654-109X.2010.01118.x
Article
Google Scholar
Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Appl Veg Sci 15:369–382. doi:10.1111/j.1654-109X.2011.01164.x
Article
Google Scholar
Price JS (1997) Soil moisture, water tension, and water table relationships in a managed cutover bog. J Hydrol 202:21–32. doi:10.1016/S0022-1694(97)00037-1
Article
Google Scholar
Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241. doi:10.1029/2002WR001302
Google Scholar
Price JS, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40. doi:10.1672/0277-5212(2001)021[0032:DHTFSR]2.0.CO;2
Price JS, Rochefort L, Quinty F (1998) Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover, and Sphagnum regeneration. Ecol Eng 10:293–312. doi:10.1016/S0925-8574(98)00046-9
Article
Google Scholar
Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374. doi:10.3732/ajb.0800019
PubMed
Article
Google Scholar
Rochefort L (2000) Sphagnum: a keystone genus in habitat restoration. The Bryologist 103:503–508
Article
Google Scholar
Rochefort L, Campeau S, Bugnon JL (2002) Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum? Aquat Bot 74:327–341. doi:10.1016/S0304-3770(02)00147-X
Article
Google Scholar
Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20. doi:10.1023/A:1022011027946
CAS
Article
Google Scholar
Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, Oxford
Book
Google Scholar
Schouwenaars JM (1993) Hydrological differences between bogs and bog-relicts and consequences for bog restoration. In: Best EPH, Bakker JP (eds) Netherlands-Wetlands. Dev Hydrobiol 88:217–224. Springer, Arnhem. doi: 10.1007/978-94-011-2042-5_11
Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi:10.1139/b72-289
CAS
Article
Google Scholar
Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Glob Biogeochem Cycles 21:GB1007. doi:10.1029/2006GB002715
Article
Google Scholar
Strack M, Zuback YCA (2013) Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10:2885–2896. doi:10.5194/bg-10-2885-2013
CAS
Article
Google Scholar
Sundh I, Nilsson M, Mikkelä C, Granberg G, Svensson B (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29:499–503
Google Scholar
Tang A (2009) Ontario’s coal phase out plan. Ministry of Energy, Government of Ontario. http://www.news.ontario.ca/mei/en/2009/09/ontarios-coal-phase-out-plan.html. Accessed 18 June 2014
Tarnocai C, Kettles IM, Lacelle B (2000) Peatlands of Canada Database. Geological Survey of Canada Open File 3834
Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574. doi:10.1007/s004420050891
Article
Google Scholar
Tuittila E-S, Komulainen VM, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cutaway peatland. Glob Change Biol 6:569–581. doi:10.1046/j.1365-2486.2000.00341.x
Article
Google Scholar
Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493. doi:10.1111/j.1061-2971.2004.00280.x
Article
Google Scholar
Turunen J (2008) Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ Res 13:319–334
CAS
Google Scholar
van Seters TE, Price JS (2001) The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec. Hydrol Process 15:233–248. doi:10.1002/hyp.145
Article
Google Scholar
Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018. doi:10.1029/2007JG000400
Google Scholar
Waddington JM, McNeil P (2002) Peat oxidation in an abandoned vacuum extracted peatland. Can J Soil Sci 82:279–286
CAS
Article
Google Scholar
Waddington JM, Price JS (2000) Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys Geogr 21:433–451
Google Scholar
Waddington JM, Warner KD (2001) Restoring the carbon sink function of cut-over peatlands. Ecoscience 8:359–368
Google Scholar
Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: Implications for restoration. Biogeochemistry 54:115–130. doi:10.1023/A:1010617207537
CAS
Article
Google Scholar
Waddington JM, Warner KD, Kennedy GW (2002) Cutover peatlands: A persistent source of atmospheric CO2. Glob Biogeochem Cycles 16:1–7. doi:10.1029/2001GB001398
Article
Google Scholar
Waddington JM, Rochefort L, Campeau S (2003a) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95. doi:10.1023/A:1022009621693
CAS
Article
Google Scholar
Waddington JM, Greenwood MJ, Petrone RM, Price JS (2003b) Mulch decomposition impedes recovery of net carbon sink function in a restored peatland. Ecol Eng 20:199–210. doi:10.1016/S0925-8574(03)00025-9
Article
Google Scholar
Waddington JM, Plach J, Cagampan J, Lucchese M, Strack M (2009) Reducing the carbon footprint of Canadian peat extraction and restoration. Ambio 38:194–200. doi:10.1579/0044-7447-38.4.194
CAS
PubMed
Article
Google Scholar
Waddington JM, Strack M, Greenwood MJ (2010) Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO2 exchange to ecosystem-scale restoration. J Geophys Res 115:G01008. doi:10.1029/2009JG001090
Google Scholar
Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2009) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions? Restor Ecol 17:796–806. doi:10.1111/j.1526-100X.2008.00416.x
Article
Google Scholar
Yli-Petäys M, Laine J, Vasander H, Tuitilla E-S (2007) Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment. Boreal Environ Res 12:177–190
Google Scholar