Skip to main content

Assessment of an integrated peat-harvesting and reclamation method: peatland-atmosphere carbon fluxes and vegetation recovery

Abstract

We document a two-year experimental trial of a recently-developed integrated peat-harvesting and reclamation technique at a poor fen in northern Ontario, Canada. We removed and conserved the uppermost ~0.3 m of peat in blocks while deeper peat was harvested from the resultant pit. We allowed the extraction pit to flood with shallow groundwater, and then reclaimed the conserved surficial peat blocks by transplanting them into the flooded pit where they formed a low, floating mat. In the 2nd year after harvest average Sphagnum cover in our experimental plot was intermediate (~25 %) between hummocks (~100 %) and hollows (~10 %) at an adjacent unharvested reference plot. Mean rates of Sphagnum productivity were greater in the experimental plot (65–86 g m−2 month−1) than in the reference plot (45–55 g m−2 month−1) for both hummock (S. fuscum) and lawn (S. magellanicum) species, although not significantly so, indicating that the transplant had no adverse effects on Sphagnum health. The inundated soil conditions in the trial pit prevented the large carbon dioxide emissions that are characteristic of many harvested peatlands. During the second growing season midday net ecosystem exchange at the experimental plot was similar to that at hollows in the reference plot. However, the anoxic soil conditions in the experimental plot led to highly elevated methane emissions in both years. Our results demonstrate that the method can enable rapid re-establishment of a healthy Sphagnum mat and carbon dioxide sequestration function in harvested peatlands, although the global warming potential of our experimental trial was high due to elevated methane emissions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165

    CAS  Article  Google Scholar 

  • Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539. doi:10.2307/3545942

    Article  Google Scholar 

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond B Biol Sci 268:1315–1321. doi:10.1098/rspb.2001.1665

    CAS  Article  Google Scholar 

  • Bönsel A, Sonneck AG (2011) Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008. Wetl Ecol Manag 19:183–194. doi:10.1007/s11273-011-9210-x

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916. doi:10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

  • Cagampan JP, Waddington JM (2008a) Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm. Ecoscience 15:258–267. doi:10.2980/15-2-3054

    Article  Google Scholar 

  • Cagampan JP, Waddington JM (2008b) Moisture dynamics and hydrophysical properties of a transplanted acrotelm on a cutover peatland. Hydrol Process 22:1776–1787. doi:10.1002/hyp.6802

    Article  Google Scholar 

  • Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49. doi:10.2307/2258168

    Article  Google Scholar 

  • Cooper MDA, Evans CD, Zielinski P, Levy PE, Gray A, Peacock M, Norris D, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland re-wetting. Ecosystems 17:1227–1241. doi:10.1007/s10021-014-9791-3

    CAS  Article  Google Scholar 

  • Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326. doi:10.1016/0038-0717(93)90130-4

    CAS  Article  Google Scholar 

  • Elling AE, Knighton MD (1984) Sphagnum moss recovery after harvest in a Minnesota bog. J Soil Water Conserv 39:209–211

    Google Scholar 

  • Environment Canada (2014a) Greenhouse Gas Sources and Sinks in Canada. National Inventory Report 1990–2012. Government of Canada. http://www.ec.gc.ca/ges-ghg/default.asp?/lang=En&n=1357A041–1. Accessed 20 June 2014

  • Environment Canada (2014b) Historical Climate Database. http://climate.weather.gc.ca/index_e.html. Accessed 11 Dec 2014

  • Environmental Commissioner of Ontario (2005) 2004–2005 Annual Report. Environmental Commissioner of Ontario, Toronto

  • Ferland C, Rochefort L (1997) Restoration techniques for Sphagnum-dominated peatlands. Can J Bot 75:1110–1118. doi:10.1139/b97-122

    Article  Google Scholar 

  • Glatzel S, Kalbitz K, Dalva M, Moore TR (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113:397–411. doi:10.1016/S0016-7061(02)00372-5

    CAS  Article  Google Scholar 

  • Glatzel S, Basiliko N, Moore TR (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267. doi:10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2

  • Gleeson J, Zeller A, McLaughlin JW (2006) Peat as a Fuel Source in Ontario: A Preliminary Literature Review. Forest Research Information Paper. Ontario Forest Research Institute, Sault Ste Marie

    Google Scholar 

  • González E, Rochefort L (2014) Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol Eng 68:279–290. doi:10.1016/j.ecoleng.2014.03.051

    Article  Google Scholar 

  • González E, Rochefort L, Poulin M (2013) Trajectories of plant recovery in block-cut peatlands 35 years after peat extraction. Appl Ecol Environ Res 11:385–406

    Article  Google Scholar 

  • Graf MD, Bérubé V, Rochefort L (2012) Restoration of peatlands after peat extraction: Impacts, restoration goals, and techniques. In: Vitt DH, Bhatti JS (eds) Restoration and Reclamation of Boreal Ecosystems. Cambridge University Press, Cambridge, pp 259–280

    Chapter  Google Scholar 

  • Howley M, Holland M (2013) Energy in Ireland 1990–2012. Sustainable Energy Authority of Ireland 2013 Report. http://www.seai.ie/Publications/Statistics_Publications/Energy_in_Ireland/Energy_in_Ireland_1990_-_2012_Report.pdf. Accessed 18 June 2014

  • Joosten H, Clarke D (2002) Wise Use of Mires and Peatlands. International Mire Conservation Group and International Peat Society, Devon

    Google Scholar 

  • Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water Air Soil Pollut 141:263–272. doi:10.1023/A:1021324326859

    CAS  Article  Google Scholar 

  • Landry T, Rochefort L, Poulin M (2012) Impact of seedbed and water level on the establishment of plant species associated with bog pools: implications for restoration. Native Plants J 13:205–215

    Google Scholar 

  • Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi:10.5194/bg-8-3203-2011

    CAS  Article  Google Scholar 

  • Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738. doi:10.5194/bg-7-2711-2010

    CAS  Article  Google Scholar 

  • Marinier M, Glatzel S, Moore TR (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 11:141–149

    Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367. doi:10.1046/j.1365-2664.2003.00790.x

    Article  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664. doi:10.1111/j.1365-2389.1993.tb02330.x

    CAS  Article  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  • Nilsson K, Nilsson M (2004) The climate impacts of energy peat utilisation in Sweden–the effect of former land-use and after-treatment. IVL Swedish Environmental Research Institute, Report B1606, Stockholm, pp 92 

  • Nykänen H, Alm J, Lang K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357. doi:10.2307/2845930

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 23 June 2014

  • Petrone RM, Waddington JM, Price JS (2001) Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol Process 15:2839–2845. doi:10.1002/hyp.475

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117

  • Pouliot R, Rochefort L, Karofeld E (2011) Initiation of microtopography in revegetated cutover peatlands. Appl Veg Sci 14:158–171. doi:10.1111/j.1654-109X.2010.01118.x

    Article  Google Scholar 

  • Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Appl Veg Sci 15:369–382. doi:10.1111/j.1654-109X.2011.01164.x

    Article  Google Scholar 

  • Price JS (1997) Soil moisture, water tension, and water table relationships in a managed cutover bog. J Hydrol 202:21–32. doi:10.1016/S0022-1694(97)00037-1

    Article  Google Scholar 

  • Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241. doi:10.1029/2002WR001302

    Google Scholar 

  • Price JS, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40. doi:10.1672/0277-5212(2001)021[0032:DHTFSR]2.0.CO;2

  • Price JS, Rochefort L, Quinty F (1998) Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover, and Sphagnum regeneration. Ecol Eng 10:293–312. doi:10.1016/S0925-8574(98)00046-9

    Article  Google Scholar 

  • Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374. doi:10.3732/ajb.0800019

    PubMed  Article  Google Scholar 

  • Rochefort L (2000) Sphagnum: a keystone genus in habitat restoration. The Bryologist 103:503–508

    Article  Google Scholar 

  • Rochefort L, Campeau S, Bugnon JL (2002) Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum? Aquat Bot 74:327–341. doi:10.1016/S0304-3770(02)00147-X

    Article  Google Scholar 

  • Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20. doi:10.1023/A:1022011027946

    CAS  Article  Google Scholar 

  • Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schouwenaars JM (1993) Hydrological differences between bogs and bog-relicts and consequences for bog restoration. In: Best EPH, Bakker JP (eds) Netherlands-Wetlands. Dev Hydrobiol 88:217–224. Springer, Arnhem. doi: 10.1007/978-94-011-2042-5_11

  • Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi:10.1139/b72-289

    CAS  Article  Google Scholar 

  • Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Glob Biogeochem Cycles 21:GB1007. doi:10.1029/2006GB002715

    Article  Google Scholar 

  • Strack M, Zuback YCA (2013) Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10:2885–2896. doi:10.5194/bg-10-2885-2013

    CAS  Article  Google Scholar 

  • Sundh I, Nilsson M, Mikkelä C, Granberg G, Svensson B (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29:499–503

    Google Scholar 

  • Tang A (2009) Ontario’s coal phase out plan. Ministry of Energy, Government of Ontario. http://www.news.ontario.ca/mei/en/2009/09/ontarios-coal-phase-out-plan.html. Accessed 18 June 2014

  • Tarnocai C, Kettles IM, Lacelle B (2000) Peatlands of Canada Database. Geological Survey of Canada Open File 3834

  • Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574. doi:10.1007/s004420050891

    Article  Google Scholar 

  • Tuittila E-S, Komulainen VM, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cutaway peatland. Glob Change Biol 6:569–581. doi:10.1046/j.1365-2486.2000.00341.x

    Article  Google Scholar 

  • Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493. doi:10.1111/j.1061-2971.2004.00280.x

    Article  Google Scholar 

  • Turunen J (2008) Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ Res 13:319–334

    CAS  Google Scholar 

  • van Seters TE, Price JS (2001) The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec. Hydrol Process 15:233–248. doi:10.1002/hyp.145

    Article  Google Scholar 

  • Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018. doi:10.1029/2007JG000400

    Google Scholar 

  • Waddington JM, McNeil P (2002) Peat oxidation in an abandoned vacuum extracted peatland. Can J Soil Sci 82:279–286

    CAS  Article  Google Scholar 

  • Waddington JM, Price JS (2000) Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys Geogr 21:433–451

    Google Scholar 

  • Waddington JM, Warner KD (2001) Restoring the carbon sink function of cut-over peatlands. Ecoscience 8:359–368

    Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: Implications for restoration. Biogeochemistry 54:115–130. doi:10.1023/A:1010617207537

    CAS  Article  Google Scholar 

  • Waddington JM, Warner KD, Kennedy GW (2002) Cutover peatlands: A persistent source of atmospheric CO2. Glob Biogeochem Cycles 16:1–7. doi:10.1029/2001GB001398

    Article  Google Scholar 

  • Waddington JM, Rochefort L, Campeau S (2003a) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95. doi:10.1023/A:1022009621693

    CAS  Article  Google Scholar 

  • Waddington JM, Greenwood MJ, Petrone RM, Price JS (2003b) Mulch decomposition impedes recovery of net carbon sink function in a restored peatland. Ecol Eng 20:199–210. doi:10.1016/S0925-8574(03)00025-9

    Article  Google Scholar 

  • Waddington JM, Plach J, Cagampan J, Lucchese M, Strack M (2009) Reducing the carbon footprint of Canadian peat extraction and restoration. Ambio 38:194–200. doi:10.1579/0044-7447-38.4.194

    CAS  PubMed  Article  Google Scholar 

  • Waddington JM, Strack M, Greenwood MJ (2010) Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO2 exchange to ecosystem-scale restoration. J Geophys Res 115:G01008. doi:10.1029/2009JG001090

    Google Scholar 

  • Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2009) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions? Restor Ecol 17:796–806. doi:10.1111/j.1526-100X.2008.00416.x

    Article  Google Scholar 

  • Yli-Petäys M, Laine J, Vasander H, Tuitilla E-S (2007) Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment. Boreal Environ Res 12:177–190

    Google Scholar 

Download references

Acknowledgments

We are grateful to Adam Schaubel, Danielle Solondz, Natalie Spina, Merritt Turetsky and the late Wayne McLellan for field assistance. Brian Mol, Christina Mol and Susanne Walford provided valuable logistical support.

Funding

This research was funded by a grant to JMW from the Ontario Centres for Excellence and Atikokan Bio Energy Research Centre, and with support from Peat Resources Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Morris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilhelm, L.P., Morris, P.J., Granath, G. et al. Assessment of an integrated peat-harvesting and reclamation method: peatland-atmosphere carbon fluxes and vegetation recovery. Wetlands Ecol Manage 23, 491–504 (2015). https://doi.org/10.1007/s11273-014-9399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9399-6

Keywords

  • Peat extraction
  • Sphagnum
  • Carbon dioxide
  • Methane
  • Peat-block reclamation
  • Floating peat
  • Acrotelm transplant