Wetlands Ecology and Management

, Volume 23, Issue 3, pp 491–504 | Cite as

Assessment of an integrated peat-harvesting and reclamation method: peatland-atmosphere carbon fluxes and vegetation recovery

  • Lana P. Wilhelm
  • Paul J. Morris
  • Gustaf Granath
  • James M. Waddington
Original Paper

Abstract

We document a two-year experimental trial of a recently-developed integrated peat-harvesting and reclamation technique at a poor fen in northern Ontario, Canada. We removed and conserved the uppermost ~0.3 m of peat in blocks while deeper peat was harvested from the resultant pit. We allowed the extraction pit to flood with shallow groundwater, and then reclaimed the conserved surficial peat blocks by transplanting them into the flooded pit where they formed a low, floating mat. In the 2nd year after harvest average Sphagnum cover in our experimental plot was intermediate (~25 %) between hummocks (~100 %) and hollows (~10 %) at an adjacent unharvested reference plot. Mean rates of Sphagnum productivity were greater in the experimental plot (65–86 g m−2 month−1) than in the reference plot (45–55 g m−2 month−1) for both hummock (S. fuscum) and lawn (S. magellanicum) species, although not significantly so, indicating that the transplant had no adverse effects on Sphagnum health. The inundated soil conditions in the trial pit prevented the large carbon dioxide emissions that are characteristic of many harvested peatlands. During the second growing season midday net ecosystem exchange at the experimental plot was similar to that at hollows in the reference plot. However, the anoxic soil conditions in the experimental plot led to highly elevated methane emissions in both years. Our results demonstrate that the method can enable rapid re-establishment of a healthy Sphagnum mat and carbon dioxide sequestration function in harvested peatlands, although the global warming potential of our experimental trial was high due to elevated methane emissions.

Keywords

Peat extraction Sphagnum Carbon dioxide Methane Peat-block reclamation Floating peat Acrotelm transplant 

Notes

Acknowledgments

We are grateful to Adam Schaubel, Danielle Solondz, Natalie Spina, Merritt Turetsky and the late Wayne McLellan for field assistance. Brian Mol, Christina Mol and Susanne Walford provided valuable logistical support.

Funding

This research was funded by a grant to JMW from the Ontario Centres for Excellence and Atikokan Bio Energy Research Centre, and with support from Peat Resources Ltd.

References

  1. Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165CrossRefGoogle Scholar
  2. Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539. doi: 10.2307/3545942 CrossRefGoogle Scholar
  3. Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond B Biol Sci 268:1315–1321. doi: 10.1098/rspb.2001.1665 CrossRefGoogle Scholar
  4. Bönsel A, Sonneck AG (2011) Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008. Wetl Ecol Manag 19:183–194. doi: 10.1007/s11273-011-9210-x CrossRefGoogle Scholar
  5. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916. doi: 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
  6. Cagampan JP, Waddington JM (2008a) Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm. Ecoscience 15:258–267. doi: 10.2980/15-2-3054 CrossRefGoogle Scholar
  7. Cagampan JP, Waddington JM (2008b) Moisture dynamics and hydrophysical properties of a transplanted acrotelm on a cutover peatland. Hydrol Process 22:1776–1787. doi: 10.1002/hyp.6802 CrossRefGoogle Scholar
  8. Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49. doi: 10.2307/2258168 CrossRefGoogle Scholar
  9. Cooper MDA, Evans CD, Zielinski P, Levy PE, Gray A, Peacock M, Norris D, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland re-wetting. Ecosystems 17:1227–1241. doi: 10.1007/s10021-014-9791-3 CrossRefGoogle Scholar
  10. Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326. doi: 10.1016/0038-0717(93)90130-4 CrossRefGoogle Scholar
  11. Elling AE, Knighton MD (1984) Sphagnum moss recovery after harvest in a Minnesota bog. J Soil Water Conserv 39:209–211Google Scholar
  12. Environment Canada (2014a) Greenhouse Gas Sources and Sinks in Canada. National Inventory Report 1990–2012. Government of Canada. http://www.ec.gc.ca/ges-ghg/default.asp?/lang=En&n=1357A041–1. Accessed 20 June 2014
  13. Environment Canada (2014b) Historical Climate Database. http://climate.weather.gc.ca/index_e.html. Accessed 11 Dec 2014
  14. Environmental Commissioner of Ontario (2005) 2004–2005 Annual Report. Environmental Commissioner of Ontario, TorontoGoogle Scholar
  15. Ferland C, Rochefort L (1997) Restoration techniques for Sphagnum-dominated peatlands. Can J Bot 75:1110–1118. doi: 10.1139/b97-122 CrossRefGoogle Scholar
  16. Glatzel S, Kalbitz K, Dalva M, Moore TR (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113:397–411. doi: 10.1016/S0016-7061(02)00372-5 CrossRefGoogle Scholar
  17. Glatzel S, Basiliko N, Moore TR (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267. doi: 10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2
  18. Gleeson J, Zeller A, McLaughlin JW (2006) Peat as a Fuel Source in Ontario: A Preliminary Literature Review. Forest Research Information Paper. Ontario Forest Research Institute, Sault Ste MarieGoogle Scholar
  19. González E, Rochefort L (2014) Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol Eng 68:279–290. doi: 10.1016/j.ecoleng.2014.03.051 CrossRefGoogle Scholar
  20. González E, Rochefort L, Poulin M (2013) Trajectories of plant recovery in block-cut peatlands 35 years after peat extraction. Appl Ecol Environ Res 11:385–406CrossRefGoogle Scholar
  21. Graf MD, Bérubé V, Rochefort L (2012) Restoration of peatlands after peat extraction: Impacts, restoration goals, and techniques. In: Vitt DH, Bhatti JS (eds) Restoration and Reclamation of Boreal Ecosystems. Cambridge University Press, Cambridge, pp 259–280CrossRefGoogle Scholar
  22. Howley M, Holland M (2013) Energy in Ireland 1990–2012. Sustainable Energy Authority of Ireland 2013 Report. http://www.seai.ie/Publications/Statistics_Publications/Energy_in_Ireland/Energy_in_Ireland_1990_-_2012_Report.pdf. Accessed 18 June 2014
  23. Joosten H, Clarke D (2002) Wise Use of Mires and Peatlands. International Mire Conservation Group and International Peat Society, DevonGoogle Scholar
  24. Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water Air Soil Pollut 141:263–272. doi: 10.1023/A:1021324326859 CrossRefGoogle Scholar
  25. Landry T, Rochefort L, Poulin M (2012) Impact of seedbed and water level on the establishment of plant species associated with bog pools: implications for restoration. Native Plants J 13:205–215Google Scholar
  26. Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi: 10.5194/bg-8-3203-2011 CrossRefGoogle Scholar
  27. Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738. doi: 10.5194/bg-7-2711-2010 CrossRefGoogle Scholar
  28. Marinier M, Glatzel S, Moore TR (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 11:141–149Google Scholar
  29. McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367. doi: 10.1046/j.1365-2664.2003.00790.x CrossRefGoogle Scholar
  30. Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664. doi: 10.1111/j.1365-2389.1993.tb02330.x CrossRefGoogle Scholar
  31. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740Google Scholar
  32. Nilsson K, Nilsson M (2004) The climate impacts of energy peat utilisation in Sweden–the effect of former land-use and after-treatment. IVL Swedish Environmental Research Institute, Report B1606, Stockholm, pp 92 Google Scholar
  33. Nykänen H, Alm J, Lang K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357. doi: 10.2307/2845930 CrossRefGoogle Scholar
  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 23 June 2014
  35. Petrone RM, Waddington JM, Price JS (2001) Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol Process 15:2839–2845. doi: 10.1002/hyp.475 CrossRefGoogle Scholar
  36. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117Google Scholar
  37. Pouliot R, Rochefort L, Karofeld E (2011) Initiation of microtopography in revegetated cutover peatlands. Appl Veg Sci 14:158–171. doi: 10.1111/j.1654-109X.2010.01118.x CrossRefGoogle Scholar
  38. Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Appl Veg Sci 15:369–382. doi: 10.1111/j.1654-109X.2011.01164.x CrossRefGoogle Scholar
  39. Price JS (1997) Soil moisture, water tension, and water table relationships in a managed cutover bog. J Hydrol 202:21–32. doi: 10.1016/S0022-1694(97)00037-1 CrossRefGoogle Scholar
  40. Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241. doi: 10.1029/2002WR001302 Google Scholar
  41. Price JS, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40. doi: 10.1672/0277-5212(2001)021[0032:DHTFSR]2.0.CO;2
  42. Price JS, Rochefort L, Quinty F (1998) Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover, and Sphagnum regeneration. Ecol Eng 10:293–312. doi: 10.1016/S0925-8574(98)00046-9 CrossRefGoogle Scholar
  43. Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374. doi: 10.3732/ajb.0800019 PubMedCrossRefGoogle Scholar
  44. Rochefort L (2000) Sphagnum: a keystone genus in habitat restoration. The Bryologist 103:503–508CrossRefGoogle Scholar
  45. Rochefort L, Campeau S, Bugnon JL (2002) Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum? Aquat Bot 74:327–341. doi: 10.1016/S0304-3770(02)00147-X CrossRefGoogle Scholar
  46. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20. doi: 10.1023/A:1022011027946 CrossRefGoogle Scholar
  47. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, OxfordCrossRefGoogle Scholar
  48. Schouwenaars JM (1993) Hydrological differences between bogs and bog-relicts and consequences for bog restoration. In: Best EPH, Bakker JP (eds) Netherlands-Wetlands. Dev Hydrobiol 88:217–224. Springer, Arnhem. doi:  10.1007/978-94-011-2042-5_11
  49. Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi: 10.1139/b72-289 CrossRefGoogle Scholar
  50. Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Glob Biogeochem Cycles 21:GB1007. doi: 10.1029/2006GB002715 CrossRefGoogle Scholar
  51. Strack M, Zuback YCA (2013) Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10:2885–2896. doi: 10.5194/bg-10-2885-2013 CrossRefGoogle Scholar
  52. Sundh I, Nilsson M, Mikkelä C, Granberg G, Svensson B (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29:499–503Google Scholar
  53. Tang A (2009) Ontario’s coal phase out plan. Ministry of Energy, Government of Ontario. http://www.news.ontario.ca/mei/en/2009/09/ontarios-coal-phase-out-plan.html. Accessed 18 June 2014
  54. Tarnocai C, Kettles IM, Lacelle B (2000) Peatlands of Canada Database. Geological Survey of Canada Open File 3834Google Scholar
  55. Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574. doi: 10.1007/s004420050891 CrossRefGoogle Scholar
  56. Tuittila E-S, Komulainen VM, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cutaway peatland. Glob Change Biol 6:569–581. doi: 10.1046/j.1365-2486.2000.00341.x CrossRefGoogle Scholar
  57. Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493. doi: 10.1111/j.1061-2971.2004.00280.x CrossRefGoogle Scholar
  58. Turunen J (2008) Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ Res 13:319–334Google Scholar
  59. van Seters TE, Price JS (2001) The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec. Hydrol Process 15:233–248. doi: 10.1002/hyp.145 CrossRefGoogle Scholar
  60. Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018. doi: 10.1029/2007JG000400 Google Scholar
  61. Waddington JM, McNeil P (2002) Peat oxidation in an abandoned vacuum extracted peatland. Can J Soil Sci 82:279–286CrossRefGoogle Scholar
  62. Waddington JM, Price JS (2000) Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys Geogr 21:433–451Google Scholar
  63. Waddington JM, Warner KD (2001) Restoring the carbon sink function of cut-over peatlands. Ecoscience 8:359–368Google Scholar
  64. Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: Implications for restoration. Biogeochemistry 54:115–130. doi: 10.1023/A:1010617207537 CrossRefGoogle Scholar
  65. Waddington JM, Warner KD, Kennedy GW (2002) Cutover peatlands: A persistent source of atmospheric CO2. Glob Biogeochem Cycles 16:1–7. doi: 10.1029/2001GB001398 CrossRefGoogle Scholar
  66. Waddington JM, Rochefort L, Campeau S (2003a) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95. doi: 10.1023/A:1022009621693 CrossRefGoogle Scholar
  67. Waddington JM, Greenwood MJ, Petrone RM, Price JS (2003b) Mulch decomposition impedes recovery of net carbon sink function in a restored peatland. Ecol Eng 20:199–210. doi: 10.1016/S0925-8574(03)00025-9 CrossRefGoogle Scholar
  68. Waddington JM, Plach J, Cagampan J, Lucchese M, Strack M (2009) Reducing the carbon footprint of Canadian peat extraction and restoration. Ambio 38:194–200. doi: 10.1579/0044-7447-38.4.194 PubMedCrossRefGoogle Scholar
  69. Waddington JM, Strack M, Greenwood MJ (2010) Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO2 exchange to ecosystem-scale restoration. J Geophys Res 115:G01008. doi: 10.1029/2009JG001090 Google Scholar
  70. Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2009) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions? Restor Ecol 17:796–806. doi: 10.1111/j.1526-100X.2008.00416.x CrossRefGoogle Scholar
  71. Yli-Petäys M, Laine J, Vasander H, Tuitilla E-S (2007) Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment. Boreal Environ Res 12:177–190Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lana P. Wilhelm
    • 1
  • Paul J. Morris
    • 2
  • Gustaf Granath
    • 1
    • 3
  • James M. Waddington
    • 1
  1. 1.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  2. 2.School of GeographyUniversity of LeedsLeedsUK
  3. 3.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations