Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia

Abstract

Wet meadows are important ecosystems for forage production and as carbon reservoirs in semi-arid areas. In Patagonia, Argentina, large areas of wet meadows have been classified as overgrazed by livestock. The objective of this study was to determine whether long-term overgrazing has affected carbon (C) storage in plant and soil pools in wet and mesic meadows. The study occurred in Northern Patagonia, in three study sites located along a precipitation gradient. Our results indicate that long-term overgrazing reduced, on average, 35 % of the total ecosystem C pool. There was significantly lower aboveground and belowground plant production in heavily grazed compared to lightly grazed sites, 419 ± 262 – 128 ± 110 g m2 year−1 and 3796 ± 2622 – 1702 ± 1012 g m2 year−1, respectively. Soil C concentrations were also less in heavily grazed sites (184 ± 98 – 105 ± 58 g kg−1 at 1 m depth, respectively). The response of meadows to long-term heavy grazing also appears to be influenced by different levels of precipitation, with sites in drier areas being apparently more susceptible to overgrazing. Our results indicate that new management and restoration practices are needed to stop and reverse meadow deterioration in degraded meadows of Northern Patagonia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci 24:10–17

    Article  Google Scholar 

  2. Aerts RH, De Caluwe H, Konings H (1992) Seasonal allocation of biomass and nitrogen in four Carex species from mesotrophic and eutrophic fens as affected by nitrogen supply. J Ecol 80:653–664

    Article  Google Scholar 

  3. Bernard JM, Solander D, Kvet J (1988) Production and nutrient dynamics in Carex wetlands. Aquat Bot 30:127–147

    Google Scholar 

  4. Bernard JM (1990) Life history and vegetative reproduction in Carex. Can J Bot 68:1441–1448

    Article  Google Scholar 

  5. Biondini ME, Patton BD, Nyren PE (1998) Grazing intensity and ecosystem processes in a northern mixed-grass prairie, USA. Ecol Appl 8:469–479

    Article  Google Scholar 

  6. Blake GR (1982) Bulk density. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis. Agronomy, vol 9. American Society of Agronomy, Madison WI, pp 374–390

  7. Boddy E, Hill PW, Farrar J, Jones DL (2007) Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39:827–835

    CAS  Article  Google Scholar 

  8. Bonvissuto GL, Somlo RC, Lanciotti ML, Carteau AG, Busso CA (2008) Guías de condición para pastizales naturales de “Precordillera”, “Sierras y Mesetas” y “Monte Austral” de Patagonia. In: Griselda Luz Bonvissuto (ed) INTA EEA Bariloche, p 48

  9. Bran DE, López CR, Marcolín AA, Ayesa JA, Barrios D (1998) Valles y mallines de la comarca de Ingeniero Jacobacci (Río Negro) Distribución y tipificación utilitaria. Proyecto de investigación estratégica: generación de tecnología para el aprovechamiento de mallines. Módulo I- Relevamiento, cartografía, clasificación y caracterización, Instituto Nacional de Tecnología Agropecuaria (INTA), p 26

  10. Brevik E, Fenton T, Moran L (2002) Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ Pollut 116:137–141

    Article  Google Scholar 

  11. Buono G, Oesterheld M, Nakamatsu V, Paruelo JM (2010) Spatial and temporal variation of primary production of Patagonian wet meadows. J Arid Environ 74:1257–1261

    Article  Google Scholar 

  12. Burgos AL (1993) Caracterización de la relación entre disponibilidad hídrica y vegetación en un mallín precordillerano. Dessertation, Universidad del Comahue

  13. Canevari P, Blanco DE, Bucher E, Castro G, Davison I (eds) (1998) Los Humedales de la Argentina: clasificación, situación actual, conservación y legislación. Wetlands International Publ 46

  14. Castelli RM, Chambers JC, Tausch RJ (2000) Soil-plant relations along a soil-water gradient in Great Basin riparian meadows. Wetlands 20:251–266

    Article  Google Scholar 

  15. Chen GS, Tian HQ (2007) Land use/cover changes effects on carbon cycling in terrestrial ecosystems. J Plant Ecol 31:189–204

    CAS  Google Scholar 

  16. Chimner RA, Welker JM (2011) Influence of grazing and precipitation on ecosystem carbon cycling in a mixedgrass Prairie. Pastoralism: Research, Policy and Practice 1:20

  17. Chimner RA, Bonvissuto GL, Cremona MV, Gaitan JJ, López CR (2011) Ecohydrological conditions of wetlands along a precipitation gradient in Patagonia, Argentina. Ecologia Austral 21:329–337

    Google Scholar 

  18. Cox DR, Reid N (2000) The theory of the design of experiments. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  19. Del Valle HF, Elissalde NO, Gagliardini DA, Milovich J (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Land Res Manag 12:95–121

    Article  Google Scholar 

  20. Easdale MH, D Sacchero, M Vigna, P Willems (2014) Assessing the magnitude of impact of volcanic ash deposits on Merino wool production and fibre traits in the context of a drought in North-west Patagonia, Argentina. Rangeland J http://dx.doi.org/10.1071/RJ13124

  21. Failde V, Ramilo D (2006) El desarrollo rural participativo como herramienta de lucha contra la desertificación INTA AER Seclantás, Salta, p 12

  22. Fernandez OA, Caldwell MM (1975) Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. J Ecol 63:703–714

    Article  Google Scholar 

  23. Fiala K (1993) Underground biomass in meadow stands. In: Rychnovská M (ed) Structure and functioning of seminatural meadows. Developments in agricultural and managed-forest ecology, vol 27. Elsevier, Amsterdam, pp 133–153

  24. Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above-and-below-ground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266

    Article  Google Scholar 

  25. Frank DA, Kuns MM, Guido DR (2002) Consumer control of grassland plant production. Ecology 83:602–606

    Article  Google Scholar 

  26. Gaitán JJ (2002) Topografía, pastoreo y vegetación como factores de control de la concentración y patrón espacial del carbono edáfico en la estepa Patagónica. Dissertation, Universidad de Buenos Aires, área Recursos Naturales Escuela para Graduados Alberto Soriano, p 130

  27. Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307:41–50

    CAS  Article  Google Scholar 

  28. Golluscio RA, Deregibus VA, Paruelo JM (1998) Sustainability and range management in the Patagonian steppes. Ecología Austral 8:265–284

    Google Scholar 

  29. Henry GHR, Svoboda J, Freedman B (1990) Standing crop and net production of sedge meadows of an ungrazed polar desert oasis. Can J Bot 68:2660–2667

    Article  Google Scholar 

  30. Hurlbert SH (1984) Pseudo-replication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  31. Iriondo MH, Orellana JA, Neiff JJ (1974) Sobre el concepto de un “mallín” cordillerano. Instituto Nacional de Limnología. José Macía. Santo Tomé (Santa Fe). Revista de la Asociación de Ciencias Naturales del Litoral 5:45–52

    Google Scholar 

  32. Irisarri JGN, Oesterheld M, Paruelo JM, Texeira MA (2012) Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. J Veg Sci 23:114–126

    Article  Google Scholar 

  33. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  34. Jakrlová J (1993) Primary producers of the natural stand. In: Rychnovská M (ed) Structure and functioning of seminatural meadows. Developments in agricultural and managed-forest ecology, vol 27. Elsevier, Amsterdam, pp 99–132

  35. Jobággy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  36. Kathleen AD, Kauffman JB, Brookshire ENJ, Baham JE (2004) Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia 139:309–317

    Article  Google Scholar 

  37. Lanciotti ML, Cremona MV, Burgos AL (1999) Generación de tecnología para el aprovechamiento racional de mallines. Proyecto de Investigación Estratégica. Módulo II: Tecnología para la recuperación y mejoramiento de mallines: dinámica del agua. Com Tec No 39 Ed, INTA EEA Bariloche

  38. León RJC, Aguiar MR (1985) El deterioro por uso pastoril en estepas herbáceas patagónicas. Phytocoenología 13:181–196

    Article  Google Scholar 

  39. León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Main vegetation units of the extra Andean Patagonia. Ecología Austral 8:125–144

    Google Scholar 

  40. Li YQ, Zhao HL, Zhao XY, Zhang TH, Chen YP (2006) Soil respiration, carbon balance and carbon storage of sandy grassland under post-grazing natural restoration. Acta Prataculturae Sinica 15:25–31, in Chinese with English abstract

  41. López CR, Gaitán JJ, Ayesa JA, Siffredi GL, Bran DE (2005) Evaluación y clasificación de valles y mallines del Sudoeste de Río Negro. Área de Recursos Naturales Relevamiento integrado. INTA EEA Bariloche Comunicación Técnica 97:1–27

    Google Scholar 

  42. Manning ME, Swanson SR, Svejcar T, Trent J (1989) Rooting characteristics of four intermountain meadow community types. J Range Manag 42:309–312

    Article  Google Scholar 

  43. Martin D, Chambers J (2002) Restoration of riparian meadows degraded by livestock grazing: above and below ground responses. Plant Ecol 163:77–91

    Article  Google Scholar 

  44. Martinez GCG (2005) Cambios edáficos asociados al pastoreo ovino en la estepa patagónica, Distrito Occidental. Faculdad de Agronomía, Universidad de Buenos Aires, p 37

  45. McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592

    Article  Google Scholar 

  46. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Article  Google Scholar 

  47. Milton SJ, Hoffman MT (1994) The application of state-and-transition models to rangeland research and management in arid and semi-arid grassy Karoo, South Africa. Afr J Range Forage Sci 11:18–24

    Article  Google Scholar 

  48. Norton JB, Hayley RO, Laura J, David EL, William RH (2014) Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J Soils Sediments 14:34–43

    CAS  Article  Google Scholar 

  49. Nuñez MN, Solman S, Menéndez C, Rolla CCA, Cabré MF (2005) Estimación de escenarios regionales de cambio climático mediante el uso de modelos climáticos regionales. 2da Comunicación Nacional de Cambio Climático. Proyecto GEF. BIRF PF 51286 AR. CIMA/CONICET B-9 Modelos Climáticos Regionales

  50. Otting NJ (1998) Ecological characteristics of montane floodplain plant communities in the Upper Grande Ronde River Basin, Oregon. Dissertation, Oregon State University

  51. Pandey CB, Singh JS (1992) Rainfall and grazing effects on net primary productivity in a tropical savanna, India. Ecology 73:2007–2021

    Article  Google Scholar 

  52. Paruelo JM, Bertiller MB, Schlichter TM, Coronato FR (1993) Secuencias de deterioro en distintos ambientes patagónicos. Su caracterización mediante el modelo de estados y transiciones. Convenio Argentino Alemán. Cooperación Técnica INTA-GTZ, p 110

  53. Perelman SB, León RJC, Bussacca JP (1997) Floristic changes related to grazing intensity in a Patagonian shrub steppe. Ecography 20:400–406

    Article  Google Scholar 

  54. Povirk KL, Welker JM, Vance GF (2001) Carbon sequestration in Arctic Tundra, Alpine Tundra and Mountain Meadow ecosystems. In: Follet RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Washington, DC, pp 189–228

    Google Scholar 

  55. Pucheta E, Bonamici I, Cabido M, Díaz S (2004) Belowground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Aust Ecol 29:201–208

    Article  Google Scholar 

  56. Reichle DE, Dinger BE, Edwards NT, Harris WF, Sollins P (1973) Carbon flow and storage in a forest ecosystem. Brookhaven Symp Biol 24:345–365

    Google Scholar 

  57. Rhoades JD (1996) Chapter 14: salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No 5. SSSA, ASA, Madison, Wisconsin

  58. Rydin H, Jeglum J (2006) The biology of peatlands. Biology of habitats. Oxford University Press, New York

    Google Scholar 

  59. SAS (2002–2003). Version 9.2. SAS Institute Inc, Cary NC, USA

  60. Schabenberger O, Pierce F (2002) Contemporary statistical models for the plant and soil sciences. CRC Press, Boca Raton, FL

    Google Scholar 

  61. Schlesinger WH (1977) Carbon balance in terrestrial de-tritus. Annu Rev Ecol Syst 8:51–81

    CAS  Article  Google Scholar 

  62. Shlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762–774

    Article  Google Scholar 

  63. Sims PL, Singh JS (1978) The structure and function of ten western North American grasslands. III. Net primary production, turnover, and efficiencies of energy capture and water use. J Ecol 66:573–597

    Article  Google Scholar 

  64. Thomas GW (1996) Chapter 16: soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No 5. SSSA, ASA, Madison, Wisconsin

  65. Toledo ZO, Kauffman JB (2001) Root biomass in relation to channel morphology of headwater streams. J Am Water Resour Assoc 37:1653–1663

    Article  Google Scholar 

  66. Topp GC, Galganow YT, Ball BC, Carter MR (1993) Soil water desorption curves. In: Carter (ed) Soil sampling and methods of analysis. CSSS, Canadian Soc. Soil Sci. Lewis Publ, Boca Raton, Florida, pp 569–580

    Google Scholar 

  67. Van der Maarel E, Titlyanova A (1989) Above-ground and below-ground biomass relations in steppes under different grazing conditions. Oikos 56:364–370

    Article  Google Scholar 

  68. Villamil M, Amiotti N, Peinemann N (2001) Soil degradation related to overgrazing in the semi-arid southern caldenal area or Argentina. Soil Sci 166:441–452

    CAS  Article  Google Scholar 

  69. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the cromic titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  70. Willis B (1914) El Norte de la Patagonia. Naturaleza y Riqueza Tomo 1. Informe de la Comisión de Estudios Hidrológicos

  71. Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM (2010) Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant Soil 332:331–337

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CoNICET), and Instituto Nacional de Tecnología Agropecuaria (INTA, through Grant PATNOR-810342. The Ecosystem Science Center at Michigan Technological University partially supported this study. We would like to thank San Ramón Ranch, El Cóndor Ranch, and La Juanita Ranch for the permission to conduct the study. We also thank Dr. S. Varela, and Ing. A. Lavaggi for discussions and/or comments on an earlier version of the manuscript, and to the unknown reviewers, through their comments we highly improved the quality of this manuscript.

Funding

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CoNICET), and Instituto Nacional de Tecnología Agropecuaria (INTA, through Grant PATNOR-810342. The Ecosystem Science Center at Michigan Technological University partially supported this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Soledad Enriquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enriquez, A.S., Chimner, R.A., Cremona, M.V. et al. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetlands Ecol Manage 23, 439–451 (2015). https://doi.org/10.1007/s11273-014-9393-z

Download citation

Keywords

  • Patagonian wetlands
  • Patagonian meadows
  • Carbon storage systems
  • Overgrazing
  • Rangeland degradation