Wetlands Ecology and Management

, Volume 23, Issue 2, pp 167–182 | Cite as

A hydrologic tracer study in a small, natural wetland in the humid tropics of Costa Rica

  • D. KaplanEmail author
  • M. Bachelin
  • C. Yu
  • R. Muñoz-Carpena
  • Thomas L. Potter
  • W. Rodriguez-Chacón
Original Paper


Growing populations and food demand in the tropics are leading to increased environmental pressures on wetland ecosystems, including a greater reliance on natural wetlands for water quality improvement. Effective assessment of wetland treatment potential requires an improved understanding of the hydraulic and biogeochemical factors that govern contaminant behavior, however detailed studies of flow through natural, tropical wetlands are scarce. We performed a tracer study using a conservative salt (potassium bromide) to examine the hydraulic behavior of a small, natural wetland in the Costa Rican humid tropics and modeled observed breakthrough curves using the 1-D advection–dispersion equation. Velocities in the wetland were extremely slow, from less than 4 m day−1 to a maximum of ~30 m day−1, and were distributed across several flowpaths, illustrating a spatial heterogeneity of flow and velocities. Modeled dispersion coefficients were also low (33 ± 33 mday−1). Estimated residence times suggested high potential pollutant removal capacity over a range of influent concentrations, reinforcing the environmental services provided by this and other small tropical wetlands. The study also highlighted how small variations in wetland topography and vegetation yield strong differences in transport patterns that affect transport and mixing in densely vegetated, heterogeneous wetland systems. Empirical data on the hydraulics, and resulting ecosystem functions, of small, distributed wetlands may provide support for improved conservation and management of these important ecosystems.


Tracer study Wetland hydrology Bromide Residence time Water quality Humid tropics Ecosystem services 





Breakthrough curve


Residence time



The authors thank Dr. Wynn Philips and the University of Florida (UF) Gatorade Foundation for the generous funding to support this research. This work would not have been possible without the contributions of Paul Lane, Timothy Townsend, Hwidong Kim (UF) and Julio Tejada, Faelen Tais Kolln, Maria Floridalma Miguel Ros, Natalia Solano Valverde, Pedro Bidegaray, and Daniel Sherrard (EARTH University). M. Bachelin thanks Dr. Andrea Rinaldo (École Polytechnique Fédérale de Lausanne) for M.Sc. co-supervision.


  1. Bachand PAM, Horne AJ (2000) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. 14(1–2):17–32Google Scholar
  2. Bear J (1988) Dynamics of fluids in porous media. Dover, MineolaGoogle Scholar
  3. Brouwer R, Langford IH, Bateman IJ, Turner RK (1999) A meta-analysis of wetland contingent valuation studies. Reg. Environ. Change 1(1):47–57. doi: 10.1007/S101130050007 CrossRefGoogle Scholar
  4. Bullock A (1993) 13: Perspectives on the hydrology and water resource management of natural freshwater wetlands and lakes in the humid tropics. Hydrology and water management in the humid tropics: hydrological research issues and strategies for water management 273Google Scholar
  5. Chambers P, Prepas E, Hamilton H, Bothwell M (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl. 1:249–257CrossRefGoogle Scholar
  6. Choi J, Harvey JW (2000) Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades. Wetlands 20(3):500–511CrossRefGoogle Scholar
  7. Choi J, Harvey JW (2014) Relative significance of microtopography and vegetation as controls on surface water flow on a low-gradient floodplain. Wetlands 34(1):101–115Google Scholar
  8. Daniels AE, Cumming GS (2008) Conversion or conservation? Understanding wetland change in northwest Costa Rica. Ecol. Appl. 18(1):49–63. doi: 10.1890/06-1658.1 PubMedCrossRefGoogle Scholar
  9. Debusk TA, Laughlin RB, Schwartz LN (1996) Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res. 30(11):2707–2716. doi: 10.1016/S0043-1354(96)00184-4 CrossRefGoogle Scholar
  10. Doble M, Kumar A (2005) Biotreatment of industrial effluents. Butterworth-Heinemann, BurlingtonGoogle Scholar
  11. Ellison AM (2004) Wetlands of Central America. Wetlands Ecol. Manage. 12(1):3–55CrossRefGoogle Scholar
  12. Ewel KC (1990) Multiple demands on wetlands. Bioscience 40:660–666CrossRefGoogle Scholar
  13. Feld CK, Martins da Silva P, Paulo Sousa J, De Bello F, Bugter R, Grandin U, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118(12):1862–1871CrossRefGoogle Scholar
  14. Gallardo M, César J (2006) Evaluación de la calidad natural del agua y su variación espacio temporal en el humedal la reserva, de la Universidad EARTH, zona caribe de Costa Rica. EARTH University, Lic Ing Agr, GuácimoGoogle Scholar
  15. Gallardo B, Garcia M, Cabezas Á, Gonzalez E, Gonzalez M, Ciancarelli C et al (2008) Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci. 70(3):248–258CrossRefGoogle Scholar
  16. Gibbs JP (2001) Wetland loss and biodiversity conservation. Conserv. Biol. 14(1):314–317CrossRefGoogle Scholar
  17. Gleason RA, Euliss NH Jr (1998) Sedimentation of prairie wetlands. Great Plains Res 363Google Scholar
  18. Grismer ME, Tausendschoen M, Shepherd HL (2001) Hydraulic characteristics of a subsurface flow constructed wetland for winery effluent treatment. Water Environ. Res. 73(4):466–477CrossRefGoogle Scholar
  19. Grundl T, Small G (1993) Mineral contributions to atrazine and alachlor sorption in soil mixtures of variable organic carbon and clay content. J. Contam. Hydrol. 14(2):117–128CrossRefGoogle Scholar
  20. Hansson LA, Brönmark C, Anders Nilsson P, Åbjörnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw. Biol. 50(4):705–714CrossRefGoogle Scholar
  21. Harden HS, Chanton JP, Rose JB, John DE, Hooks ME (2003) Comparison of sulfur hexafluoride, fluorescein and rhodamine dyes and the bacteriophage PRD-1 in tracing subsurface flow. J. Hydrol. 277(1–2):100–115. doi: 10.1016/S0022-1694(03)00074-X CrossRefGoogle Scholar
  22. Harvey JW, Saiers JE, Newlin JT (2005) Solute transport and storage mechanisms in wetlands of the Everglades, south Florida. Water Resour. Res. 41(5):W05009. doi: 10.1029/2004wr003507 Google Scholar
  23. Hey DL, Philippi NS (2006) Flood reduction through wetland restoration: the Upper Mississippi River Basin as a case history. Restor. Ecol. 3(1):4–17CrossRefGoogle Scholar
  24. Ho DT, Engel VC, Variano EA, Schmieder PJ, Condon ME (2009) Tracer studies of sheet flow in the Florida Everglades. Geophys. Res. Lett. 36(9):L09401Google Scholar
  25. Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit. Rev. Environ. Sci. Technol. 21(5–6):491–565Google Scholar
  26. Junk WJ (2002) Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29(4):414–435Google Scholar
  27. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106(1):110–127Google Scholar
  28. Kadlec RH (1994) Detention and mixing in free water wetlands. Ecol. Eng. 3(4):345–380CrossRefGoogle Scholar
  29. Kadlec RH, Wallace S (2008) Treatment wetlands. CRC pressGoogle Scholar
  30. Kaplan D, Bachelin M, Muñoz-Carpena R, Rodríguez Chacón W (2011) Hydrological importance and water quality treatment potential of a small freshwater wetland in the humid tropics of Costa Rica. Wetlands 31(6):1117–1130CrossRefGoogle Scholar
  31. Kaplan DA, Paudel R, Cohen MJ, Jawitz JW (2012) Orientation matters: patch anisotropy controls discharge competence and hydroperiod in a patterned peatland. Geophys Res Lett 39(17)Google Scholar
  32. Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Keefe SH, Barber LB, Runkel RL, Ryan JN, McKnight DM, Wass RD (2004) Conservative and reactive solute transport in constructed wetlands. Water Resour. Res. 40(1):W01201Google Scholar
  34. King AC, Mitchell CA, Howes T (1997) Hydraulic tracer studies in a pilot scale subsurface flow constructed wetland. Water Sci. Technol. 35(5):189–196CrossRefGoogle Scholar
  35. Kolln F (2008) Metodología para analizar la Dinámica Espacio-Temporal del Flujo Hídrico en el Humedal Natural “La Reserva”, Zona Caribe de Costa Rica. Lic Ing Agr, EARTH University, Guácimo, Costa RicaGoogle Scholar
  36. Leonard L, Croft A, Childers D, Mitchell-Bruker S, Solo-Gabriele H, Ross M (2006) Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. Hydrobiologia 569(1):5–22CrossRefGoogle Scholar
  37. Martinez CJ (2001) Hydraulic characterization and modeling of the Orlando Easterly constructed treatment wetland. University of Florida, GainesvilleGoogle Scholar
  38. Martinez CJ, Wise WR (2003) Hydraulic analysis of Orlando easterly wetland. J. Environ. Eng. 129(6):553–560CrossRefGoogle Scholar
  39. McLaughlin D, Kaplan D, Cohen MJ (2014) In review. A significant nexus: geographically isolated wetlands influence landscape hydrology. Water Resour Res MS# 203WR015002Google Scholar
  40. Min JH, Wise WR (2009) Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects. Hydrol. Process. 23(6):830–841CrossRefGoogle Scholar
  41. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New YorkGoogle Scholar
  42. Mitsch WJ, Tejada J, Nahlik A, Kohlmann B, Bernal B, Hernández CE (2008) Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol. Eng. 34(4):276–288CrossRefGoogle Scholar
  43. Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol. Eng. 28(3):246–257CrossRefGoogle Scholar
  44. Pang L, Goltz M, Close M (2003) Application of the method of temporal moments to interpret solute transport with sorption and degradation. J. Contam. Hydrol. 60(1):123–134PubMedCrossRefGoogle Scholar
  45. Reilly JF, Horne AJ, Miller CD (1999) Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecol. Eng. 14(1):33–47CrossRefGoogle Scholar
  46. Roggeri H (1995) Tropical freshwater wetlands: a guide to current knowledge and sustainable management. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  47. Runkel RL, McKnight DM, Andrews ED (1998) Analysis of transient storage subject to unsteady flow: diel flow variation in an Antarctic stream. J North Am Benthological Soc 17(2):143–154CrossRefGoogle Scholar
  48. Saiers JE, Harvey JW, Mylon SE (2003) Surface-water transport of suspended matter through wetland vegetation of the Florida everglades. Geophysical Research Letters 30(19):1987CrossRefGoogle Scholar
  49. Sánchez-Carrillo S, Angeler DG, Álvarez-Cobelas M, Sánchez-Andrés R (2011) Freshwater wetland eutrophication. In: Eutrophication: causes, consequences and control. Springer, Netherlands, pp 195–210Google Scholar
  50. Schaffranek RW, Riscassi AL (2004) Flow velocity, water temperature, and conductivity at selected locations in Shark River Slough, Everglades National Park, Florida; July 1999–July 2003: US Geological SurveyGoogle Scholar
  51. Schulz R, Peall SK (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35(2):422–426PubMedCrossRefGoogle Scholar
  52. Šimůnek J, Van Genuchten MT, Šejna M, Toride N, Leij F (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection–dispersion equation, versions 1.0 and 2.0. International Ground Water Modeling CenterGoogle Scholar
  53. Snodgrass JW, Jagoe CH, Bryan AL Jr, Brant HA, Burger J (2000) Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish. Can J Fish Aquat Sci 57(1):171–180CrossRefGoogle Scholar
  54. Stern DA, Khanbilvardi R, Alair JC, Richardson W (2001) Description of flow through a natural wetland using dye tracer tests. Ecol Eng 18(2):173–184CrossRefGoogle Scholar
  55. Toride N, Leij F, Van Genuchten MT (1995) The CXTFIT code for estimating transport parameters from laboratory or filed tracer experiments. US Salinity Laboratory, RiversideGoogle Scholar
  56. Variano EA, Ho DT, Engel VC, Schmieder PJ, Reid MC (2009) Flow and mixing dynamics in a patterned wetland: kilometer-scale tracer releases in the Everglades. Water Resour Res 45(8):W08422Google Scholar
  57. Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1(2):65–72Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Kaplan
    • 1
    • 2
    Email author
  • M. Bachelin
    • 2
    • 3
  • C. Yu
    • 2
  • R. Muñoz-Carpena
    • 2
  • Thomas L. Potter
    • 4
  • W. Rodriguez-Chacón
    • 5
  1. 1.Environmental Engineering Sciences Department, Engineering School of Sustainable Infrastructure and EnvironmentUniversity of FloridaGainesvilleUSA
  2. 2.Agricultural and Biological Engineering DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Section Sciences et Ingénierie de l’EnvironnementÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.USDA-ARS Southeast Watershed LaboratoryTiftonUSA
  5. 5.EARTH UniversitySan JoséCosta Rica

Personalised recommendations