Wetlands Ecology and Management

, Volume 22, Issue 2, pp 129–141 | Cite as

Biomass briquettes: a novel incentive for managing papyrus wetlands sustainably?

  • E. H. J. Morrison
  • A. Banzaert
  • C. Upton
  • N. Pacini
  • J. Pokorný
  • D. M. Harper
Original Paper


Recent innovations in the briquetting of carbonized biomass have the potential to improve the efficacy of papyrus as a fuel source. Selective harvesting of only mature stems may prove more sustainable than experimental clear-cutting approaches to regeneration pursued in earlier studies, whilst still providing up to 90 % of available biomass. Briquettes produced from papyrus compare favourably with alternative local fuels, both in physical properties and from the perspectives of potential end-users. Papyrus wetlands at Lake Naivasha, Kenya, may have the potential to provide 1.5 × 109 cuboid briquettes (volume c. 90 cm3; weight c. 25 g) from a biannual harvest, satisfying the domestic fuel requirements of > 85 % of the District’s population whilst simultaneously reducing pressure on forests exploited for the production of wood charcoal.


Carbonized biomass Selective harvesting Lake Naivasha 



Thanks to the Frank Knox Memorial Fellowship, Harvard University, as well as the Natural Environment Research Council and the Economic and Social Research Council, UK, for financial support to E. Morrison. The authors thank the Kenyan Ministry of Education, Science and Technology for research permission to D. Harper. The ESPA (Ecosystem Services for Poverty Alleviation) programme also supported the fieldwork of D. Harper and C. Upton. The authors gratefully acknowledge support from REWE (Germany) and COOP (Switzerland) for fieldwork conducted under the auspices of the Naivasha Basin Sustainability Initiative (NBSI).


  1. Arinaitwe K, Kiremire BT, Muir DCG et al (2012) Atmospheric concentrations of polycyclic aromatic hydrocarbons in the watershed of Lake Victoria, East Africa. Environ Sci Technol 46:11524–11531PubMedCrossRefGoogle Scholar
  2. Banzaert A (2013) Viability of waste-based cooking fuels for developing countries: combustion emissions and field feasibility. Ph.D. thesis, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  3. Bavor HJ, Waters MT (2008) Buffering performance in a papyrus-dominated wetland system of the Kenya portion of Lake Victoria Basin. In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Ecological studies series, Chap. 4. Springer, New YorkGoogle Scholar
  4. Boar RR, Harper DM, Adams CS (1999) Biomass allocation in Cyperus papyrus in a tropical wetland, Lake Naivasha, Kenya. Biotropica 31:411–421CrossRefGoogle Scholar
  5. Cacciatore MA, Scheufele DA, Shaw BR (2012) Labeling renewable energies: how the language surrounding biofuels can influence its public acceptance. Energy Policy 51:673–682CrossRefGoogle Scholar
  6. Cohen-Shacham E, Dayan T, Feitelson E et al (2012) Ecosystem service trade-offs in wetland management: drainage and rehabilitation of the Hula, Israel. Hydrol Sci J 56:1582–1601CrossRefGoogle Scholar
  7. D-Lab (2012) Available http://d-lab.mit.edu. Accessed 30 Nov 2012
  8. Garver EG, Dubbe ER, Pratt DC (1988) Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquat Bot 32:117–127CrossRefGoogle Scholar
  9. Gaudet JJ (1977) Uptake, accumulation and loss of nutrients by papyrus in tropical swamps. Ecology 58:415–422CrossRefGoogle Scholar
  10. Gaudet JJ (1979) Seasonal changes in nutrients in tropical swamp water. J Ecol 67:953–981Google Scholar
  11. Gaudet JJ (1998) When papyrus ruled; the versatile plant that strengthened Pharaohs of Egypt. The Washington Post, Washington DC, p. H01Google Scholar
  12. Gichuki J, Dahdouh Guebas F, Mugo J et al (2001) Species inventory and the local uses of the plants and fishes of the Lower Sondu Miriu wetland of Lake Victoria, Kenya. Hydrobiologia 458:99–106CrossRefGoogle Scholar
  13. Gopal B, Sharma KP (1984) Seasonal changes in concentration of major nutrient elements in the rhizomes and leaves of Typha elephantina Roxb. Aquat Bot 20:65–73CrossRefGoogle Scholar
  14. Jones MB (1983) Papyrus: a new fuel for the third world. New Sci 99:418–421Google Scholar
  15. Jones MB (1987) The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 71:355–359CrossRefGoogle Scholar
  16. Jones M, Muthuri F (1985) The canopy structure and micro-climate of papyrus (Cyperus papyrus) swamps. J Ecol 73:481–491CrossRefGoogle Scholar
  17. Jones MB, Muthuri FM (1997) Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. J Trop Ecol 13:347–356CrossRefGoogle Scholar
  18. Kariuki FW, Muthuri FM, Jones MB (2001) Sustain-able harvesting of Cyperus papyrus L. in Lake Naivasha, Kenya. In: Harper DM, Zalewski M (eds) Ecohydrology: science and the sustainable management of tropical waters. UNESCO, Paris, p 42Google Scholar
  19. Kenya National Bureau of Statistics (2012) 2009 Population and Housing Census. Available http://knbs.or.ke. Accessed 30 Nov 2012
  20. Kitaka N, Harper DM, Mavuti KM (2002) Phosphorus inputs to Lake Naivasha, Kenya, from its catchment and the trophic state of the lake. Hydrobiologia 488:73–80CrossRefGoogle Scholar
  21. Květ J, Westlake DF, Dykjova D et al (1998) Primary production in wetlands. In: Westlake DF, Květ J, Szezepariski A (eds) The production ecology of wetlands: the IBP Synthesis. Cambridge University Press, Cambridge, pp 78–168Google Scholar
  22. Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 4:381–388CrossRefGoogle Scholar
  23. Loiselle S, Cózar A, van Dam A et al (2006) Tools for wetland resource management in East Africa: focus on the Lake Victoria papyrus wetlands. In: Verhoeven TA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management, Chap. 6. Springer, BerlinGoogle Scholar
  24. Morrison EHJ (2013) Ecological restoration of papyrus wetlands at Lake Naivasha, Kenya: social and ecological considerations. Ph.D. thesis, University of Leicester, UKGoogle Scholar
  25. Morrison EHJ, Upton C, Odhiambo-K’oyooh K et al (2012) Managing the natural capital of papyrus within riparian zones of Lake Victoria. Hydrobiologia 692:5–17CrossRefGoogle Scholar
  26. Morrison EHJ, Upton C, Pacini N et al (2013) Public perceptions of papyrus: community appraisal of wetland ecosystem services at Lake Naivasha, Kenya. Ecohydrol Hydrobiol. doi: 10.1016/j.ecohyd.2013.03.008 Google Scholar
  27. Muthuri FM, Jones MB (1997) Nutrient distribution in a papyrus swamp: Lake Naivasha, Kenya. Aquat Bot 56:35–50CrossRefGoogle Scholar
  28. Muthuri FM, Kinyamario JI (1989) Nutritive value of papyrus (Cyperus papyrus, Cyperaceae), a tropical emergent macrophyte. Econ Bot 43:23–30CrossRefGoogle Scholar
  29. Muthuri FM, Jones MB, Imbamba SK (1989) Primary productivity of papyrus (Cyperus papyrus) in a tropical swamp; Lake Naivasha, Kenya. Biomass 18:1–14CrossRefGoogle Scholar
  30. Onywere SM, Mironga JM, Simiyu I (2012) Use of remote sensing data in evaluating the extent of anthropogenic activities and their impact on Lake Naivasha, Kenya. Open Environ Eng J 5:9–18CrossRefGoogle Scholar
  31. Osumba JJL, Okeyo-Owuor JB, Raburu PO (2010) Effect of harvesting on temporal papyrus (Cyperus papyrus) biomass regeneration potential among swamps in Winam Gulf wetlands of Lake Victoria Basin, Kenya. Wetl Ecol Manage 18:333–341CrossRefGoogle Scholar
  32. Owino AO, Ryan PG (2007) Recent papyrus swamp habitat loss and conservation implications in western Kenya. Wetl Ecol Manage 15:1–12CrossRefGoogle Scholar
  33. Pereira BLC, Oliveira AC, Carvalho AMML et al (2012) Quality of wood and charcoal from Eucalyptus clones for ironmaster use. Int J For Res. doi: 10.1155/2012/523025 Google Scholar
  34. Ramsar (2009) About the Convention on Wetlands (Ramsar, Iran, 1971). Available http://ramsar.org. Accessed 30 Nov 2012
  35. Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manage 15:489–498CrossRefGoogle Scholar
  36. Saunders MJ, Kansiime F, Jones MB (2012) Agricultural encroachment: implications for carbon sequestration in tropical African wetlands. Global Change Biol. doi: 10.1111/j.1365-2486.2011.02633.x Google Scholar
  37. Stoof-Leichsenring KR, Jungender A, Olaka LA et al (2011) Environmental variability in Lake Naivasha, Kenya, over the last two centuries. J Paleolimnol 45:353–367Google Scholar
  38. Stupak M, Vanderschuren H, Gruissem W et al (2006) Biotechnological approaches to cassava protein improvement. Trends Food Sci Technol 12:634–641CrossRefGoogle Scholar
  39. Terer T, Muthama Muasya A, Dahdouh-Guebas F et al (2012a) Integrating local ecological knowledge and management practices of an isolated semi-arid papyrus swamp (Loboi, Kenya) into a wider conservation framework. J Environ Manage 93:71–84PubMedCrossRefGoogle Scholar
  40. Terer T, Triest L, Muthama Muasya A (2012b) Effects of harvesting Cyperus papyrus in undisturbed wetland, Lake Naivasha, Kenya. Hydrobiologia 680:135–148CrossRefGoogle Scholar
  41. Thenya T (2006) Analysis of macrophyte biomass productivity, utilization and its impact on various eco-types of Yala Swamp, Lake Victoria Basin, Kenya. In: Denich M, Martius C, Rodgers C (eds) Ecology and development series no. 48. Cuvillier-Verlag, Göttingen, p 207Google Scholar
  42. Thompson K (1976) Swamp development in the head waters of the White Nile. In: Rzóska J (ed) The Nile, biology of an ancient river. Dr. W. Junk, The Hague, pp 177–196CrossRefGoogle Scholar
  43. Thompson K, Shewry PR, Woolhouse HW (1979) Papyrus swamp development in the Upemba Basin, Zaïre: studies of population structure in Cyperus papyrus stands. Bot J Linn Soc 78:299–316CrossRefGoogle Scholar
  44. van Dam AA, Dardona A, Kelderman P et al (2007) A simulation model for nitrogen retention in a papyrus wetland near Lake Victoria, Uganda (East Africa). Wetl Ecol Manage 15:469–480CrossRefGoogle Scholar
  45. Wiedemann HG, Bayer G (1983) Papyrus, the paper of Ancient Egypt. Anal Chem 55:1220–1230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. H. J. Morrison
    • 1
    • 2
    • 3
    • 5
  • A. Banzaert
    • 4
  • C. Upton
    • 2
    • 5
  • N. Pacini
    • 5
    • 6
  • J. Pokorný
    • 7
  • D. M. Harper
    • 3
    • 5
  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of GeographyUniversity of LeicesterLeicesterUK
  3. 3.Department of BiologyUniversity of LeicesterLeicesterUK
  4. 4.Wellesley Engineering Laboratory, Wellesley CollegeWellesleyUSA
  5. 5.Centre for Landscape and Climate ResearchUniversity of LeicesterLeicesterUK
  6. 6.Department of Environmental and Chemical EngineeringUniversity of CalabriaRendeItaly
  7. 7.TřeboňCzech Republic

Personalised recommendations