Wetlands Ecology and Management

, Volume 20, Issue 6, pp 461–475 | Cite as

A classification of major natural habitats of Amazonian white-water river floodplains (várzeas)

  • Wolfgang J. Junk
  • Maria Teresa Fernandez Piedade
  • Jochen Schöngart
  • Florian Wittmann
Original Paper

Abstract

Most countries sharing the Amazon basin have signed the Ramsar Convention on Wetlands of International Importance but still lack complete wetland inventories, classification systems, and management plans. Amazonian wetlands vary considerably with respect to hydrology, water and soil fertility, vegetation cover, diversity in plant and animal species and primary and secondary productivity. Here, we propose a classification system of major natural habitats of Amazonian white-water river floodplains (várzeas) based on hydrological, water and soil chemistry and biological parameters. The Amazonian várzea is one of the largest Amazonian wetlands. It is exceptionally rich in plant and animal species and plays important roles in landscape history, evolution, hydrology and biogeochemical cycles of the Amazon basin. Most of Amazonia’s rural population lives in or along the várzea, emphasizing the economic importance of its natural resources. Our classification indicates five major systems, which are subdivided into 10 main habitats and up to 40 functional (vegetation) units of which the most important mesohabitats are described. We understand this classification as a dynamic system, as it is open to the inclusion of future research attempts and habitats without affecting the entire classification system. Our classification may be used for scientific purposes, such as comparative studies on biomass, productivity, biogeochemical cycles and biodiversity. Also, because the classification builds on habitat types and/or vegetation and functional units already distinguished by the local population it may be especially useful in guiding intelligent use of várzea habitat for specific management activities, such as agriculture, animal husbandry, forestry, fisheries, and conservation.

Keywords

Amazonian wetlands Aquatic terrestrial transition zone Functional unit Higher plants Paleo-várzea Productivity 

References

  1. Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, Fish and Wildlife Service, Washington, DCGoogle Scholar
  2. Diegues ACS (1994) An inventory of Brazilian wetlands. IUCN—The World Conservation Union, GlandGoogle Scholar
  3. Diegues ACS (2002) Povos e Águas. Núcleo de Apoio à Pesquisa sobre Populações Humanas e Áreas Úmidas Brasileiras, 2nd edn. NUPAUB, São PauloGoogle Scholar
  4. Finlayson CM, Van der Valk AG (1995) Wetland classification and inventory: a summary. Vegetatio 118:185–192CrossRefGoogle Scholar
  5. Furch K, Junk WJ (1997) Physicochemical conditions in floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer, Berlin, pp 69–108Google Scholar
  6. Gibbs RJ (1967) The geochemistry of the Amazon River: part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78:1203–1232CrossRefGoogle Scholar
  7. Gopal B, Sah M (1995) Inventory and classification of wetlands in India. Vegetatio 118:39–48CrossRefGoogle Scholar
  8. Gopal B, Kvet J, Löffler H, Masing V, Patten BC (1990) Definition and classification. In: Patten BC (ed) Wetlands and shallow continental water bodies. SPB Academic Publishing, The Hague, pp 9–15Google Scholar
  9. Goulding M, Smith NHJ, Mahar DJ (1996) Floods of fortune: ecology and economy along the Amazon. Columbia University Press, New YorkGoogle Scholar
  10. Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Messeguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonian through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931PubMedCrossRefGoogle Scholar
  11. IBGE (2010) Censo Demográfico 2000–2010. Censo. http://www.censo2010.ibge.gov.br/primeiros_dados_divulgados/index.php?uf=13. Accessed 16 Nov 2011
  12. Irion G, Junk WJ, de Mello JASN (1997) The large Central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The Central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin, pp 23–46Google Scholar
  13. Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (2010) Development of the Amazon valley during the middle to late quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Ecology and management of Amazonian floodplain forests. Ecological studies, vol 210. Springer, Heidelberg, pp 27–42CrossRefGoogle Scholar
  14. Junk WJ (1997) Structure and function of the large Central Amazonian River floodplains: synthesis and discussion. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Ecological studies, vol 126. Springer, Berlin, pp 455–472Google Scholar
  15. Junk WJ (2005) Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Proc. Int. Assoc. Theor. Appl. Limnol. 29(1):11–38Google Scholar
  16. Junk WJ, Piedade MTF (1993) Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana 12(3/4):467–484Google Scholar
  17. Junk WJ, Piedade MTF (1997) Plant life in the floodplain with special reference to herbaceous plants. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer, Berlin, pp 147–186Google Scholar
  18. Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications—an update. In: Welcomme RL, Petr T (eds) Proceedings of the 2nd international symposium on the management of large rivers for fisheries, vol 2. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok, Cambodia, pp 117–149Google Scholar
  19. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain-systems. Can Special Publ Fish Aquatic Sci 106:110–127Google Scholar
  20. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) (2000) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, LeidenGoogle Scholar
  21. Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally occurring Amazonian lowland wetlands. Wetlands 31:623–640CrossRefGoogle Scholar
  22. Kalliola R, Salo J, Puhakka M, Rajasilta M, Häme T, Neller RJ, Räsänen ME, Arias WAD (1992) Upper Amazon channel migration. Naturwissenschaften 79:75–79CrossRefGoogle Scholar
  23. Meade RH (1994) Suspended sediments of the modern Amazon and Orinoco Rivers. Quat Int 21:29–39CrossRefGoogle Scholar
  24. Meade RH, Dunne T, Richey JE, Santos UM, Salati E (1985) Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228:488–490PubMedCrossRefGoogle Scholar
  25. Melack JM (1984) Amazon floodplain lakes: shape, fetch, and stratification. Verh Internat Verein Limnol 22:1278–1282Google Scholar
  26. Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Ecology and management of Amazonian floodplain forests Ecological studies, vol 210. Springer, Berlin, pp 43–59CrossRefGoogle Scholar
  27. Mertes LAK (1994) Rates of floodplain sedimentation on the Central Amazon River. Geology 22:171–174CrossRefGoogle Scholar
  28. Mertes LAK, Meade RH (1985) Particle sizes of sands collected from the bed of the Amazon River and its tributaries during 1982–1984. U.S. Geological Survey Open-File Report 85-333, pp 1–16Google Scholar
  29. Nunes da Cunha C, Junk WJ (2011) A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft, Sofia, pp 127–141Google Scholar
  30. Peixoto JMA, Nelson BW, Wittmann F (2009) Spatial and temporal dynamics of alluvial geomorphology and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens Environ 113:2258–2266CrossRefGoogle Scholar
  31. Petermann P (1997) The birds. In: Junk WJ (ed) The Central Amazon floodplain. Ecology of a pulsing system. Ecological studies, vol 126. Springer, Berlin, pp 419–452Google Scholar
  32. Piedade MTF, Junk WJ (2000) Natural herbaceous plant communities in the Amazon floodplain and their use. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, Leiden, pp 269–290Google Scholar
  33. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachia on the Amazon Floodplain. Ecology 72(4):1456–1463CrossRefGoogle Scholar
  34. Piedade MTF, Worbes M, Junk WJ (2001) Geoecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin. Oxford University Press, Oxford, pp 209–234Google Scholar
  35. Roosevelt AC (1999) Twelve thousand years of human-environment interaction in the Amazon Floodplain. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea—diversity, development, and conservation of Amazonia’s Whitewater floodplains. Advances in economic botany, vol 13. The New York Botanical Garden Press, New York, pp 371–392Google Scholar
  36. Rutchey K, Schall TN, Doren RF, Atkinson A, Ross M, Jones D, Madden M, Vilchek L, Bradlay KA, Snyder JR, Burch JN, Pernas T, Witcher B, Pyne M, White R, Smith III TJ, Sadle J, Smith CS, Patterson ME, Gann DE (2006) Vegetation classification for South Florida natural areas. United States Geological Survey, open-file report 2006-1240, Saint PetersburgGoogle Scholar
  37. Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. For Ecol Manage 256:46–58CrossRefGoogle Scholar
  38. Schöngart J, Wittmann F, Worbes M (2010) Biomass and net primary production of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management Ecological studies, vol 210. Springer, Berlin, pp 347–388Google Scholar
  39. Seidenschwarz F (1986) Pioniervegetation im Amazonasgebiet Perus. Ein pflanzensoziologischer Vergleich von vorandinem Flussufer und Kulturland. Monographs on agriculture and ecology of warmer climates, vol 3. Margraf, Triops Verlag, LangenGoogle Scholar
  40. Sioli H (1950) Das Wasser im Amazonasgebiet. Forsch Fortschr 26:274–280Google Scholar
  41. Sioli H (1965) Zur Morphologie des Flußbettes des des unteren Amazonas. Naturwissenschaften 52:104CrossRefGoogle Scholar
  42. Sousa PT Jr, Piedade MTF, Candotti E (2011) Brazil‘s forest code puts wetlands at risk. Nature 478:458PubMedCrossRefGoogle Scholar
  43. Sternberg HOR (1960) Radiocarbon dating as applied to a problem of Amazonian morphology. In: XVIII international geographical congress, no. 2, Rio de Janeiro, pp 399–423Google Scholar
  44. Ter Steege H, Pitman N, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost MF, Spichiger R, Castellanos H, Hildebrand P, Vásquez R (2006) Continental scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447PubMedCrossRefGoogle Scholar
  45. Wittmann F, Oliveira Wittmann A (2010) Use of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer, Berlin, pp 389–418Google Scholar
  46. Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37:609–619CrossRefGoogle Scholar
  47. Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  48. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage 196:199–212CrossRefGoogle Scholar
  49. Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  50. Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of Amazonian várzea forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer, Berlin, pp 61–102Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wolfgang J. Junk
    • 1
    • 2
  • Maria Teresa Fernandez Piedade
    • 3
  • Jochen Schöngart
    • 4
  • Florian Wittmann
    • 4
  1. 1.Universidade do Amazonas (UEA)ManausBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas (INCT-INAU)CuiabáBrazil
  3. 3.Instituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
  4. 4.Department of BiogeochemistryMax Planck Institute for ChemistryMainzGermany

Personalised recommendations