Skip to main content

Knowledge-based classification of remote sensing data for the estimation of below- and above-ground organic carbon stocks in riparian forests

Abstract

Floodplain forests play a crucial role in the storage of organic carbon (Corg). However, modeling of carbon stocks in these dynamic ecosystems remains inherently difficult. Here, we present the spatial estimation of Corg stocks in riparian woody vegetation and soils (to a depth of 1 m) in a Central European floodplain using very high spatial resolution remote sensing data and auxiliary geodata. The research area is the Danube Floodplain National Park in Austria, one of the last remaining wetlands with near-natural vegetation in Central Europe. Different vegetation types within the floodplain show distinct capacities to store Corg. We used remote sensing to distinguish the following vegetation types: meadow, reed bed and hardwood, softwood, and cottonwood forests. Spectral and knowledge-based classification was performed with object-based image analysis. Additional knowledge rules included distances to the river, object area, and slope information. Five different classification schemes based on spectral values and additional knowledge rules were compared and validated. Validation data for the classification accuracy were derived from forest inventories and topographical maps. Overall accuracy for vegetation types was higher for a combination of spectral- and knowledge-based classification than for spectral values alone. While water, reed beds and meadows were clearly detectable, it remained challenging to distinguish the different forest types. The total carbon storage of soils and vegetation was quantified using a Monte Carlo simulation for all classified vegetation types, and the spatial distribution was mapped. The average storage of the study site is 428.9 Mg C ha−1. Despite certain difficulties in vegetation classification this method allows an indirect estimation of Corg stocks in Central European floodplains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18:281–296. doi:10.1007/s11273-009-9169-z

    Article  Google Scholar 

  2. Awaya Y, Tsuyuki S, Kodani E, Takao G (2004) Potential of woody carbon stock estimation using high spatial resolution imagery: a case study of spruce stands. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrapub, Tokyo, pp 425–440

    Google Scholar 

  3. Baatz M, Schäpe A (2000) Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J (ed) Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000. Herbert Wichmann Verlag, Karlsruhe, pp 12–23

    Google Scholar 

  4. Behrens T, Scholten T (2006) Digital soil mapping in Germany—a review. J Plant Nutr Soil Sci 169:434–443. doi:10.1002/jpln.200521962

    Article  CAS  Google Scholar 

  5. Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258. doi:10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  6. Busse LB, Gunkel G (2002) Riparian alder fens—source or sink for nutrients and dissolved organic carbon?—2. Major sources and sinks. Limnol Ecol Manage Inland Waters 32:44–53. doi:10.1016/S0075-9511(01)80033-5

    Article  Google Scholar 

  7. Chubey MS, Franklin SE, Wulder MA (2006) Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogramm Eng Remote Sensing 72:383–394

    Google Scholar 

  8. Cierjacks A, Kleinschmit B, Babinsky M, Kleinschroth F, Markert A, Menzel M, Ziechmann U, Schiller T, Graf M, Lang F (2010) Carbon stocks of soil and vegetation on Danubian floodplains. J Plant Nutr Soil Sci 173:644–653. doi:10.1002/jpln.200900209

    Article  CAS  Google Scholar 

  9. Cierjacks A, Kleinschmit B, Kowarik I, Graf M, Lang F (2011) Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data. River Res Appl 27:1048–1057. doi:10.1002/rra.1409

    Article  Google Scholar 

  10. Conchedda G, Durieux L, Mayaux P (2008) An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J Photogramm Remote Sens 63:578–589. doi:10.1016/j.isprsjprs.2008.04.002

    Article  Google Scholar 

  11. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi:10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  12. Dissanska M, Bernier M, Payette S (2009) Object-based classification of very high resolution panchromatic images for evaluating recent change in the structure of patterned peatlands. Can J Remote Sens 35:189–215. doi:10.5589/m09-002

    Article  Google Scholar 

  13. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297. doi:10.1038/ngeo1123

    Article  CAS  Google Scholar 

  14. Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 4th edn. Ulmer, Stuttgart

    Google Scholar 

  15. Evans TL, Costa M, Telmer K, Silva TSF (2010) Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal.Selected topics in applied earth observations and remote sensing. IEEE J 3:560–575. doi:10.1109/JSTARS.2010.2089042

    Google Scholar 

  16. Farid A, Goodrich DC, Bryant R, Sorooshian S (2008) Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates. J Arid Environ 72:1–15. doi:10.1016/j.jaridenv.2007.04.010

    Article  Google Scholar 

  17. Fierke MK, Kauffman JB (2005) Structural dynamics of riparian forests along a black cottonwood successional gradient. For Ecol Manag 215:149–162. doi:10.1016/j.foreco.2005.06.014

    Article  Google Scholar 

  18. Fitzgerald RW, Lees BG (1994) Assessing the classification accuracy of multisource remote sensing data. Remote Sens Environ 47:362–368. doi:10.1016/0034-4257(94)90103-1

    Article  Google Scholar 

  19. Förster M, Kleinschmit B (2008) Object-based classification of QuickBird data using ancillary information for the detection of forest types and NATURA 2000 habitats. In: Blaschke T, Lang S, Hay G (eds) Object-based image analysis. Springer, Heidelberg, pp 275–290

    Chapter  Google Scholar 

  20. Förster M, Frick A, Walentowski H, Kleinschmit B (2008) Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats. Community Ecol 9:155–168. doi:10.1556/ComEc.9.2008.2.4

    Article  Google Scholar 

  21. GeoEye (2009) GeoEye Product Guide.57

  22. Giese LA, Aust WM, Trettin CC, Kolka RK (2000) Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests. Ecol Eng 15(Supplement 1):S157–S170. doi:10.1016/S0925-8574(99)00081-6

    Article  Google Scholar 

  23. Goetz S, Baccini A, Laporte N, Johns T, Walker W, Kellndorfer J, Houghton R, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag 4:2. doi:10.1186/1750-0680-4-2

    PubMed  Article  Google Scholar 

  24. Harrison AF, Howard PJA, Howard DM, Howard DC, Hornung M (1995) Carbon storage in forest soils. Forestry 68:335-348. doi:10.1093/forestry/68.4.335

    Google Scholar 

  25. Hazlett PW, Gordon AM, Sibley PK, Buttle JM (2005) Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. For Ecol Manag 219:56–68. doi:10.1016/j.foreco.2005.08.044

    Article  Google Scholar 

  26. Hilker T, Coops NC, Wulder MA, Black TA, Guy RD (2008) The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci Total Environ 404:411–423. doi:10.1016/j.scitotenv.2007.11.007

    PubMed  Article  CAS  Google Scholar 

  27. Hofmann G, Anders S (1996) Waldökosysteme als Quellen und Senken für Kohlenstoff - Fallstudie ostdeutsche Länder. Beiträge Forstwirtschirtschaft und Landschaftsökologie 30:9–16

    Google Scholar 

  28. IPCC (2000) Special report on land use, land-use change and forestry. Cambridge, UK

  29. Jaramillo VJ, Kauffman JB, Rentería-Rodríguez L, Cummings DL, Ellingson LJ (2003) Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6:609–629. doi:10.1007/s10021-002-0195-4

    Article  CAS  Google Scholar 

  30. Köhl M, Stümer W, Kenter B, Riedel T (2008) Effect of the estimation of forest management and decay of dead woody material on the reliability of carbon stock and carbon stock changes—A simulation study. For Ecol Manag 256:229–236. doi:10.1016/j.foreco.2008.04.004

  31. Kooistra L, Wamelink W, Schaepman-Strub G, Schaepman M, van Dobben H, Aduaka U, Batelaan O (2008) Assessing and predicting biodiversity in a floodplain ecosystem: assimilation of net primary production derived from imaging spectrometer data into a dynamic vegetation model. Remote Sens Environ 112:2118–2130. doi:10.1016/j.rse.2007.10.010

    Article  Google Scholar 

  32. Lair GJ, Zehetner F, Fiebig M, Gerzabek MH, van Gestel CAM, Hein T, Hohensinner S, Hsu P, Jones KC, Jordan G, Koelmans AA, Poot A, Slijkerman DME, Totsche KU, Bondar-Kunze E, Barth JAC (2009) How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. Environ Pollut 157:3336–3346. doi:10.1016/j.envpol.2009.06.004

    PubMed  Article  CAS  Google Scholar 

  33. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    PubMed  Article  CAS  Google Scholar 

  34. Lillesand M, Kiefer R, Chipman J (2004) Remote sensing and image interpretation. 5th edn. New York

  35. Maeda EE, Pellikka P, Clark BJF (2010) Monte Carlo simulation and remote sensing applied to agricultural survey sampling strategy in Taita Hills, Kenya. Afr J Agric Res 5:1647–1654

    Google Scholar 

  36. Matsui N, Suekuni J, Nogami M, Havanond S, Salikul P (2009) Mangrove rehabilitation dynamics and soil organic carbon changes as a result of full hydraulic restoration and re-grading of a previously intensively managed shrimp pond. Wetl Ecol Manag 18:233–242. doi:10.1007/s11273-009-9162-6

    Article  Google Scholar 

  37. McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi:10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  38. Mertes LAK (2002) Remote sensing of riverine landscapes. Freshw Biol 47:799–816. doi:10.1046/j.1365-2427.2002.00909.x

    Article  Google Scholar 

  39. Midwood J, Chow-Fraser P (2010) Mapping floating and emergent aquatic vegetation in coastal wetlands of Eastern Georgian Bay, Lake Huron, Canada. Wetlands 30:1141–1152. doi:10.1007/s13157-010-0105-z

    Article  Google Scholar 

  40. Mitra S, Wassmann R, Vlek GPL (2005) An appraisal of global wetland area and its organic carbon stock, vol 88. Current Science Association, Bangalore

    Google Scholar 

  41. Mitsch W, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manag 18:573–586. doi:10.1007/s11273-009-9164-4

    Article  CAS  Google Scholar 

  42. Munyati C (2000) Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. Int J Remote Sens 21:1787–1806. doi:10.1080/014311600209742

    Article  Google Scholar 

  43. Neeff T, de Alencastro Graça PM, Dutra LV, da Costa Freitas C (2005) Carbon budget estimation in Central Amazonia: successional forest modeling from remote sensing data. Remote Sens Environ 94:508–522. doi:10.1016/j.rse.2004.12.002

    Article  Google Scholar 

  44. Olofsson P, Lagergren F, Lindroth A, Lindström J, Klemedtsson L, Kutsch W, Eklundh L (2008) Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences 5:817–832. doi:10.5194/bg-5-817-2008

    Article  Google Scholar 

  45. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402. doi:10.1023/a:1020908432489

    Article  Google Scholar 

  46. Rokitnicki-Wojcik D, Wei A, Chow-Fraser P (2011) Transferability of object-based rule sets for mapping coastal high marsh habitat among different regions in Georgian Bay, Canada. Wetl Ecol Manag 1–14. doi:10.1007/s11273-011-9213-7

  47. Silva TSF, Costa MPF, Melack JM (2010) Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: a remote sensing approach. Remote Sens Environ 114:1998–2010. doi:10.1016/j.rse.2010.04.007

    Article  Google Scholar 

  48. Thevs N, Zerbe S, Schnittler M, Abdusalih N, Succow M (2008) Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China. Forestry 81:45–57. doi:10.1093/forestry/cpm043

    Article  Google Scholar 

  49. Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. Bioscience 54:573–584. doi:10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2

    Article  Google Scholar 

  50. Wagner I (2009) The Danube Floodplain Habitats—application of the object-based image analysis approach. In: Car A, Griesebner G, Strobl J (ed) Geospatial Crossroads @ GI_Forum ‘09. Proceedings of the Geoinformatics Forum Salzburg. Wichmann, Heidelberg, pp 218–227

  51. Zadeh LA (1989) Knowledge Representation in Fuzzy Logic. IEEE Trans Knowl Data Eng 1:89–100. doi:10.1109/69.43406

    Google Scholar 

  52. ZAMG (2002) Klimadaten von Österreich 1971–2000. Zentralanstalt für Meterorologie und Geodynamik, Vienna

    Google Scholar 

  53. Zehetner F, Lair GJ, Gerzabek MH (2009) Rapid carbon accretion and organic matter pool stabilization in riverine floodplain soils. Glob Biogeochem Cycles 23:GB4004. doi:10.1029/2009gb003481

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the administration of the Danube Floodplain National Park, especially Christian Baumgärtner and Christian Fraissl, as well as the Austrian Federal Forests Agency (ÖBf) for the support and for supplying us with geographic data, especially with data for the validation of results. We would like to thank Tobias Schmidt for the data processing and statistical support, and Kelaine Vargas for improving our English. We would also like to thank two anonymous reviewers for their helpful and detailed comments on our manuscript. The German Research Foundation (DFG): project-number 2215/2-1, provided support for this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Suchenwirth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suchenwirth, L., Förster, M., Cierjacks, A. et al. Knowledge-based classification of remote sensing data for the estimation of below- and above-ground organic carbon stocks in riparian forests. Wetlands Ecol Manage 20, 151–163 (2012). https://doi.org/10.1007/s11273-012-9252-8

Download citation

Keywords

  • Carbon
  • Floodplain
  • Riparian vegetation
  • Fuzzy logic
  • Ikonos
  • OBIA