Skip to main content
Log in

Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

We investigated the changes of water level and vegetation in a restored cut-over raised bog in response to a hydrological protection zone established around the bog. The restoration began 1997 and techniques involved ditch blocking within and around the bog to stimulate a return to conditions of intact bog ecosystems. In order to monitor the rehabilitation of the raised bog, water levels and vegetation have been recorded since before restoration measures began. The monitoring is ongoing, but an assessment of 15 year’s data (1994–2008) is presented. A hydrological protection zone with continuous high water levels could be established around the raised bog which minimizes the runoff of precipitation. Shortly after the first measures, the water levels increased significantly at all dipwells. Parallel to the increasing water levels a vascular plant species assemblage and a diverse Sphagnum community developed. In particular Sphagnum fimbriatum, S. palustre, S. recurvum and S. squarrosum spread efficiently. The cover of trees decreased significantly because of high water levels and ongoing acidification by Sphagnum spp. The high water levels have stimulated the re-vegetation and the hydrology self-regulation of the acrotelm. The successful regeneration of the acrotelm particularly became apparent in years with below-average precipitations (e.g. 2008), when the water levels in the central parts of the raised bog did not fall back to the low level reached in previous years, which had also remarkably water deficits (e.g. 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustin J, Merbach W, Schmidt W, Reining E (1996) Effect of changing temperature and watertable on trace gas emission from minerotrophic mires. Angewandte Botanik 70:45–51

    CAS  Google Scholar 

  • Baden W, Eggelsmann R (1963) Zur Durchlässigkeit der Moorböden. Zeitschrift für Kulturtechnik 4:226–254

    Google Scholar 

  • Bengtsson J, Fagerström T, Rydin H (1994) Competition and coexistence in plant communities. Trends Ecol Evol 9:246–250

    Article  PubMed  CAS  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev. 10:111–134

    Article  CAS  Google Scholar 

  • Bönsel A (2001) Hat Aeshna subarctica (Walker 1908) in Nordostdeutschland eine Überlebenschance? Die Entwicklung von zweier Vorkommen im Vergleich zum gesamten Bestand in Mecklenburg-Vorpommern. Natur und Landschaft 76:257–261

    Google Scholar 

  • Bönsel A (2005) Ecological analysis of Odonata and Saltatoria communities in North-Eastern German Raised bogs and theirs surroundings. PhD Thesis, University of Rostock

  • Bönsel A, Runze M (2005) Die Bedeutung Projektbegleitender Erfolgskontrollen bei der Revitalisierung eines Regenmoores durch wasserbauliche Maßnahmen. Natur und Landschaft 80:154–160

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer Verlag, Wien

    Google Scholar 

  • Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009a) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339

    Article  Google Scholar 

  • Breeuwer AJG, Heijmans MMPD, Berendse F, Gleichman JM, Robroek BJM, Limpens J (2009b) Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant Ecol 2004:97–111

    Article  Google Scholar 

  • Chirino C, Campeau S, Rochefort L (2006) Sphagnum establishment on bare peat: the importance of climatic variability and Sphagnum species richness. Appl Veg Sci 9:285–294

    Article  Google Scholar 

  • Clymo RS (1978) Model of peat bog growth. Ecological Studies, Berlin 27:187–223

    CAS  Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte Ecology. Chapman and Hall, London, pp 229–289

    Google Scholar 

  • Crushell PH, Smolders AJP, Schouten MGC, Roelofs JGM, van Wirdum G (2009) The origin and development of a minerotrophic soak on an Irish raised bog: an interpretation of depth profiles of hydrochemistry and peat chemistry. The Holocene 19:921–935

    Article  Google Scholar 

  • Eggelsmann R (1960) Über den unterirdischen Abfluß aus Mooren. Wasserwirtschaft 50:149–154

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, Göttingen

    Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Article  Google Scholar 

  • Famous MS, Taylor N (2005) Regeneration of three Sphagnum species. Wetl Ecol Manag 13:635–645

    Article  Google Scholar 

  • Frahm J-P, Frey W (2004) Moosflora. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Gaudig G, Kamermann D, Joosten H (2007) Growing media: promises of Sphagnum biomass. Acta Hortic 779:165–171

    Google Scholar 

  • Glatzel S, Forbrich I, Krüger C, Lemke S, Gerold G (2008) Small scale controls of greenhouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany. Biogeosciences 5:925–935

    Article  CAS  Google Scholar 

  • Gorham E, Janssens JA (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61:7–20

    Google Scholar 

  • Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetl Ecol Manag 11:109–119

    Article  CAS  Google Scholar 

  • Gremer D, Michaelis D (2003) NSG “Rauhes Moor” im Grenztal. Greifswalder Geographische Arbeiten 30:43–47

    Google Scholar 

  • Grootjans AP, Adema EB, Baaijens GJ, Rappoldt K, Verschoor A (2003) Mechanisms behind restoration of small bog ecosystems in a cover sand landscape. Archiv für Naturschutz und Landschaftsforschung August 2003:43–48

    Google Scholar 

  • Grootjans AP, Van Diggelen R, Bakker JP (2006) Restoration of mires and wet grasslands. In: Van Andel J, Aronson J (eds) Blackwell Publishing, Oxford, pp 111–123

  • Höper H et al (2008) Restoration of peatlands and greenhouse gas balances. In: Strack M (ed) Northern peatlands, greenhouse gas exchange and climate change. International Peat Society, Jyväskylä, pp 183–210

    Google Scholar 

  • Howie SA, Whitfield PH, Hebda RJ, Munson TG, Dakin RA, Jeglum JK (2009) Water table and vegetation response to ditch blocking: restoration of a raised bog in Southwestern British Columbia. Can Water Resour J 34:381–392

    Article  Google Scholar 

  • Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227

    Article  Google Scholar 

  • Ingram HAP (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–303

    Article  Google Scholar 

  • Ivanov KE (1981) Water movement in mirelands. Academic Press, London

    Google Scholar 

  • Joosten JHJ (1995) Time to regenerate: long term perspectives of raised-bog regeneration with special emphasis on paleoecological studies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 379–404

    Google Scholar 

  • Jortay A, Schumacker R (1989) Zustand, Erhaltung und Regeneration der Hochmoore im Hohen Venn (Belgien). Telma, Beiheft 2:279–293

    Google Scholar 

  • Klötzli F, Grootjans AP (2001) Restoration of natural and semi-natural wetlands systems in Central Europe: progress and predictability of developments. Restor Ecol 9:209–219

    Article  Google Scholar 

  • Koch FE (1849) Naturgeschichtliche Bemerkungen über das zwischen dem Trebel- und Recknitzthale gelegene Moor. Archiv des Vereins der Freunde der Naturgeschichte in Mecklenburg 3:147–159

    Google Scholar 

  • Kotowski W, van Diggelen R, Kleinke J (1998) Behaviour of wetland plant species along a moisture gradient in two geographically distant areas. Acta Bot Neerl 47:337–349

    Google Scholar 

  • Kowatsch A (2007) Moorschutzkonzepte und -programme in Deutschland. Ein historischer und aktueller Überblick. Naturschutz und Landschaftsplanung 39:197–204

    Google Scholar 

  • Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawndown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Lindsay RA, Immirzi CP (1996) An inventory of lowland raised bogs in Great Britain. In: Scottish Natural Heritage Research, Survey and Monitoring Report, Perth

  • Malterer T, Johnson K, Stewart J (1998) Peatland Restoration and Reclamation. Proceedings 1998 international Peat symposium, Duluth, Minnesota, USA

  • Money RP (1995) Re-establishment of a Sphagnum dominated flora on cut-over lowland raised bogs. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 405–422

    Google Scholar 

  • Morgan-Jones W, Poole JS, Goodall R (2005) Characterisation of hydrological protection zones at the margins of designated lowland raised peat bog sites. Joint Nature Conservation Committee Report, Peterborough 365:3–87

    Google Scholar 

  • Overbeck F, Happach H (1957) Über das Wachstum un den Wasserhaushalt einiger Hochmoorsphagnen. Flora 144:335–402

    Google Scholar 

  • Parkyn L, Stoneman RE, Ingram HAP (1997) Conserving Peatlands. CAB international, Wallingford

    Google Scholar 

  • Peus F (1950) Die ökologische und geographische Determination des Hochmoores als “Steppe”. Veröffentlichung des Naturwissenschaftlichen Vereins zu Osnabrück 25:39–57

    Google Scholar 

  • Pfadenhauer J, Grootjans AP (1999) Wetland restoration in Central Europe: aims and methods. Appl Veg Sci 2:95–106

    Article  Google Scholar 

  • Precker A, Krbetschek M (1997) Die Regenmoore Mecklenburg-Vorpommern–Erste Auswertungen der Untersuchungen zum Regenmoor- Schutzprogramm des Landes Mecklenburg/Vorpommern. Telma 27:205–221

    Google Scholar 

  • Reinhard H (1963) Beitrag zur Entwicklungsgeschichte des Grenztales und seine Beziehung zur Litorinatransgression. Geologie 12:94–117

    Google Scholar 

  • Richert M, Dietrich O, Koppisch D, Roth S (2000) The influence of rewetting on vegetation development and decomposition in a degraded fen. Restor Ecol 8:186–195

    Article  Google Scholar 

  • Robroek BJM, Limpens J, Breeuwer A, Crushell PH, Schouten MGC (2007) Interspecific competition between Sphagnum mosses at different water tables. Funct Ecol 21:805–812

    Article  Google Scholar 

  • Robroek BJM et al (2009) Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species identity and water table. Basic Appl Ecol 10:697–706

    Article  Google Scholar 

  • Rochefort L, Gauthier R, Lequéré D (1995) Sphagnum regeneration—toward an optimisation of bog restoration. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. John Wiley & Sons, Chichester, pp 423–434

    Google Scholar 

  • Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20

    Article  CAS  Google Scholar 

  • Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–615

    Article  Google Scholar 

  • Rydin H (1985) Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45:374–379

    Article  Google Scholar 

  • Rydin H, McDonald AJ (1985) Tolerance of Sphagnum to water level. J Bryol 13:571–578

    Google Scholar 

  • Smolders AJP, Tomassen HBM, Van Mullekom M, Lamers LPM, Roelofs JGM (2003) Mechanisms involved in the re-establishment of Sphagnum-dominated vegetation in rewetted bog remnants. Wetl Ecol Manag 11:403–418

    Article  Google Scholar 

  • Strack M, Waddington JM, Turetsky M, Roulet NT, Byrne KA (2008) Northern peatlands, greenhouse gas exchange and climate change. In: Strack M (ed) Peatlands and climate change. International Peat Society, Jyväskylä, pp 44–69

    Google Scholar 

  • Succow M (1988) Landschaftsökologische Moorkunde. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Thompson DK, Waddington JM (2008) Sphagnum under pressure: towards an ecohydrological approach to examining Sphagnum productivity. Ecohydrology 1:299–308

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  PubMed  Google Scholar 

  • Vitt DH, Slack NG (1984) Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Can J Bot 62:1409–1430

    Article  Google Scholar 

  • Waddington JM, Rochefort L, Campeau S (2003) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95

    Article  CAS  Google Scholar 

  • Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (1995) Restoration of temperate wetlands. John Wiley & Sons, Chichester

    Google Scholar 

Download references

Acknowledgments

We are grateful to M. Runze, I. Koska, I. Witt, D. Triebel and D. Gremer for providing invaluable help in the design and implementation of the field experiments. We further thank Dr. H. Lange for providing statistical analyses. Special thanks are given to all of the members of the nature conservation authority, who made the restoration program possible and who applied for subsidies for embankments for re-wetting. The thoughtful comments of Dr. S. Glatzel and several anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bönsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bönsel, A., Sonneck, AG. Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008. Wetlands Ecol Manage 19, 183–194 (2011). https://doi.org/10.1007/s11273-011-9210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-011-9210-x

Keywords

Navigation