Adams MS, McCracken MD (1974) Seasonal production of the Myriophyllum component of the littoral of Lake Wingra, Wisconsin. J Ecol 62(2):457–465. doi:10.2307/2258991
Article
Google Scholar
Asaeda T, Sharma P, Rajapakse L (2008) Seasonal patterns of carbohydrate translocation and synthesis of structural carbon components in Typha Angustifolia. Hydrobiologia 607:87–101. doi:10.1007/s10750-008-9369-1
Article
CAS
Google Scholar
Atwater BF (1980) Attempts to correlate the late quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelomne. Ph.D. dissertation, University of Delaware
Battle JM, Golladay SW (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. Am Midl Nat 146:128–145. doi:10.1674/0003-0031(2001)146[0128:HIOBOL]2.0.CO;2
Article
Google Scholar
Best EPH, Visser HWC (1986) Seasonal growth of the submerged macrophyte Ceratophyllum demersum L. in mesotrophic Lake Vechen in relation to isolation, temperature and reserve carbohydrates. Hydrobiologia 148(3):231–243. doi:10.1007/BF00017526
Article
Google Scholar
Bradbury IK, Hofstra G (1976) Vegetation death and its importance to primary production measurements. Ecology 57:209–211. doi:10.2307/1936414
Article
Google Scholar
Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24(11):1089–1099. doi:10.1016/0038-0717(92)90058-6
Article
CAS
Google Scholar
Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition, and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161. doi:10.1146/annurev.es.12.110181.001011
Article
Google Scholar
Brueske CC, Barrett CW (1994) Effects of vegetation and hydrologic load on sedimentation patterns in experimental wetland systems. Ecol Eng 3:429–447. doi:10.1016/0925-8574(94)00011-5
Article
Google Scholar
Carillo Y, Guarin A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Columbia). Aquat Bot 85:7–15. doi:10.1016/j.aquabot.2006.01.006
Article
Google Scholar
Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250. doi:10.1023/A:1009875226637
Article
Google Scholar
Chen R, Twilley RR (1999) A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118
Google Scholar
Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol Manag 13:671–684. doi:10.1007/s11273-005-0965-9
Article
Google Scholar
Chimner RA, Cooper DJ, Parton WJ (2002) Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22(1):100–110. doi:10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2
Article
Google Scholar
Corstanje R, Reddy KR, Portier KM (2006) Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat Bot 84:70–78. doi:10.1016/j.aquabot.2005.07.013
Article
Google Scholar
Craft CB, Richardson CJ (1993) Peat accretion and N, P and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3(3):446–458. doi:10.2307/1941914
Article
Google Scholar
Davis SM (1990) Sawgrass and cattail production in relation to nutrient supply in the Everglades. In: Sharitz RR, Gibbons JW (eds) Freshwater wetlands and wildlife. Office of Scientific and Technical Information, U.S. Department of Energy, Oak Ridge, pp 325–341
Google Scholar
Davis CB, van der Valk AG (1978) The decomposition of standing and fallen litter of Typha glauca and Scirpus fluviatilis. Can J Bot 56:662–674. doi:10.1139/b78-073
Article
CAS
Google Scholar
de Leeuw J, Wielemaker A, de Munck W, Herman PM (1996) Net aerial primary production (NAPP) of the marsh macrophyte Scirpus maritimus estimated by a combination of destructive and non-destructive sampling methods. Hydrobiologia 123:101–108
Google Scholar
Deverel SJ, Rojstaczer S (1996) Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resour Res 32:2359–2367. doi:10.1029/96WR01338
Article
CAS
Google Scholar
Deverel SJ, Wang B, Rojstaczer S (1998) Subsidence of organic soils, Sacramento-San Joaquin Delta, CA. In: Borchers JW (ed) Land subsidence histories and current research. Proceedings of the Dr. Joseph F. Poland symposium. Association of Engineering Geologist special publication no. 8. Star Publishing Co., Belmont, pp 489–502
Dickerman JA, Stewart AA, Wetzel RG (1986) Estimates of net annual aboveground production: sensitivity to sampling frequency. Ecology 67(3):650–659. doi:10.2307/1937689
Article
Google Scholar
Ennabili A, Ater M, Radoux M (1998) Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat Bot 62:45–56. doi:10.1016/S0304-3770(98)00075-8
Article
Google Scholar
Fraser LH, Kernezis JP (2005) A comparative assessment of seedling survival and biomass accumulation for fourteen different wetland plant species grown under minor water-depth differences. Wetlands 25(3):520–530. doi:10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2
Article
Google Scholar
Frockling S, Roulet NT, Moore TR, Richard PJH, Richard PJH, Lavoie M, Muller SD (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems (N Y, Print) 4(5):479–498. doi:10.1007/s10021-001-0105-1
Article
Google Scholar
Garbey C, Thiebaut G, Muller S (2006) An experimental study of the plastic responses of Ranunuculus peltatus Schrank to four environmental parameters. Hydrobiologia 570:41–46. doi:10.1007/s10750-006-0159-3
Article
Google Scholar
Garver FG, Dubbe DR, Pratt DC (1988) Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquat Bot 32:115–127. doi:10.1016/0304-3770(88)90092-7
Article
Google Scholar
Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:3–31. doi:10.1046/j.1469-8137.2000.00676.x
Article
Google Scholar
Giroux JF, Bedard J (1988) Estimating above- and below-ground macrophyte production in Scirpus tidal marshes. Can J Bot 66:368–374. doi:10.1139/b88-059
Article
Google Scholar
Gordon DM, Sand-Jensen K (1990) Effects of O2, pH and DIC on net-O2 evolution by marine macroalgae. Mar Biol (Berl) 106:445–451. doi:10.1007/BF01344325
Article
Google Scholar
Gosselink JG, Turner RE (1978) The role of hydrology in freshwater wetland ecosystems. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York
Google Scholar
Grace JB (1989) Effects of water depth on Typha latifolia and Typha domingensis. Am J Bot 76(5):762–768. doi:10.2307/2444423
Article
Google Scholar
Harter SK, Mitsch WJ (2003) Patterns of short-term sedimentation in a freshwater created marsh. J Environ Qual 32:325–334
CAS
PubMed
Google Scholar
Hietz P (1992) Decomposition and nutrient dynamics of reed (Phragmites austalis (Cav.) Trin. Ex Steud.) litter in Lake Neusiedl, Austria. Aquat Bot 43:211–230. doi:10.1016/0304-3770(92)90068-T
Article
CAS
Google Scholar
Karagatzides JD, Hutchinson I (1991) Intraspecific comparisons of biomass dynamics in Scirpus americanus and Scirpus maritimus on the Fraser River Delta. J Ecol 79:459–476. doi:10.2307/2260726
Article
Google Scholar
Keddy PA, Ellis TH (1985) Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Can J Bot 63:1876–1879
Article
Google Scholar
Kirby CJ, Gosselink JG (1976) Primary production in a Louisiana gulf coast Spartina alterniflora marsh. Ecology 57:1052–1059. doi:10.2307/1941070
Article
Google Scholar
Klopatek JM, Stearns FW (1978) Primary productivity of emergent marsh macrophytes in a Wisconsin freshwater marsh ecosystem. Am Midl Nat 100(2):320–332. doi:10.2307/2424831
Article
Google Scholar
Lee SY (1990) Net aerial primary productivity, litter production and decomposition of the reed Phragmites communis in a nature reserve in Hong Kong: management implications. Mar Ecol Prog Ser 66:161–173. doi:10.3354/meps066161
Article
Google Scholar
Linthurst RA, Reimold RJ (1978a) An evaluation of methods for estimating net aerial primary productivity of estuarine angiosperms. J Appl Ecol 15:919–931. doi:10.2307/2402787
Article
Google Scholar
Linthurst RA, Reimold RJ (1978b) Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59(5):945–955. doi:10.2307/1938546
Article
Google Scholar
McNaughton SJ (1975) r- and K-selection in Typha. Am Nat 109:251–262. doi:10.1086/282995
Article
Google Scholar
Miao S, Sindhoj E, Edelstein C (2008) Allometric relationships of field populations of two clonal species with contrasting life histories, Cladium jamaicense and Typha domingensis. Aquat Bot 88:1–9. doi:10.1016/j.aquabot.2007.08.001
Article
Google Scholar
Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828. doi:10.1046/j.0022-0477.2001.00602.x
Article
Google Scholar
Miller RL, Hastings L, Fujii R (2000) Hydrologic treatments affect gaseous carbon soil loss from organic soils, Twitchell Island, California, October 1995–December 1997. US Geological Survey, water resources investigations report, Sacramento, CA, 00-4042
Miller RL, Fram M, Fujii R, Wheeler G (2008) Subsidence reversal in a re-established wetland in the Sacramento-San Joaquin Delta, CA, USA. San Francisco Estuary and Water Science 6(3) article 1. Available from: http://repositories.cdlib.org/jmie/sfews/vol6/iss3/art1
Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinold, New York
Google Scholar
Morris JT, Haskin B (1990) A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71(6):2209–2217. doi:10.2307/1938633
Article
Google Scholar
Mount J, Twiss R (2005) Subsidence, sea level rise, and seismicity in the Sacramento-San Joaquin Delta. San Fran Estuary Watershed Sci 3(1). Article 5
Google Scholar
Murayama S, Bakar ZA (1996) Decomposition of tropical peat soils 1. Decomposition kinetics of organic matter of peat soils. Jpn Agric Res Q 30:145–151
Google Scholar
Neill C (1990) Nutrient limitation of hardstem bulrush (Scirpus acutus Muhl.) in a Manitoba interlake region marsh. Wetlands 10(1):69–76
Google Scholar
Pearsall WH, Gorham E (1956) Production ecology I. Standing crops of natural vegetation. Oikos 7(11):193–201
Article
Google Scholar
Penfound WT (1956) Primary production of vascular aquatic plants. Limnol Oceanogr 1(2):92–101
Google Scholar
Pratolongo P, Vicari R, Kandus P, Malvarez I (2005) A new method for evaluating net aboveground primary production (NAPP) of Scirpus gigantus (Kunth). Wetlands 25(1):228–232. doi:10.1672/0277-5212(2005)025[0228:ANMFEN]2.0.CO;2
Article
Google Scholar
Reddy KR (1981) Diel variations of certain physico-chemical parameters of water in selected aquatic systems. Hydrobiologia 85:201–207. doi:10.1007/BF00017610
Article
Google Scholar
Reed DJ (2002) Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J Coast Res 36(special issue):605–611
Google Scholar
Rocha AV, Potts DL, Goulden ML (2008) Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh. J Geophys Res 113:G04020. doi:10.1029/2008JG00713.2008
Article
CAS
Google Scholar
Rodgers JH Jr, Mckevitt ME, Hammerlund DO, Dickson KL, Cairns J Jr (1983) Primary production and decomposition of submerged and emergent aquatic plants of two Appalacian rivers. In: Fontaine TDIII, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor
Google Scholar
Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego
Google Scholar
Sharitz RR, Phillips SC (2006) Development of wetland plant communities. In: Batzer PB, Sharitz RR (eds) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley
Google Scholar
Sharma P, Asaeda T, Fujino T (2008) Effect of water depth on the rhizome dynamics of T. angustifolia. Wetlands Ecol Manag 16:43–49. doi:10.1007/s11273-007-9055-5
Article
Google Scholar
Simpson RL, Whigham DF, Walker R (1978) Seasonal patterns of nutrient movement in a freshwater tidal marsh. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20
Google Scholar
Smith SG (1987) Typha: its taxonomy and the ecological significance of hybrids. Arch Hydrobiol 27:29–138
Google Scholar
Smith LM, Kadlec JA (1985) Fire and herbivory in a Great Salt Lake marsh. Ecology 66(1):259–265. doi:10.2307/1941326
Article
Google Scholar
Squires MM, Lesack LFW (2003) The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenkie Delta. Can J Fish Aquat Sci 60:333–343. doi:10.1139/f03-027
Article
CAS
Google Scholar
Squires L, van der Valk AG (1992) Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can J Bot 70:1860–1867. doi:10.1139/b92-230
Article
Google Scholar
Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74:573–581
Google Scholar
Tanner CC (1994) Growth and nutrition of Schoenoplectus validus in agricultural wastewaters. Aquat Bot 47:131–153. doi:10.1016/0304-3770(94)90010-8
Article
Google Scholar
Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104. doi:10.2307/1938416
Article
Google Scholar
Thursby GB, Chintala MM, Stetson D, Wigland C, Champlin DM (2002) A rapid, non-destructive method for estimating aboveground biomass of salt marsh grasses. Wetlands 22(3):626–630. doi:10.1672/0277-5212(2002)022[0626:ARNDMF]2.0.CO;2
Article
Google Scholar
van der Valk AG, Attiwill PM (1984) Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat Bot 18:205–221. doi:10.1016/0304-3770(84)90062-7
Article
Google Scholar
Waters I, Shay JM (1992) Effect of water depth on population parameters of a Typha glauca stand. Can J Bot 70:349–351. doi:10.1139/b92-046
Article
Google Scholar
Westlake DF (1963) Comparisons of plant productivity. Biol Rev Camb Philos Soc 38:385–425. doi:10.1111/j.1469-185X.1963.tb00788.x
Article
Google Scholar
Whigham DF, Simpson RL (1978) The relationship between aboveground and belowground biomass of freshwater tidal macrophytes. Aquat Bot 5:355–364. doi:10.1016/0304-3770(78)90076-1
Article
Google Scholar
Whigham DF, McCormick J, Good RE, Simpson RL (1978) Biomass and primary production in freshwater tidal wetlands of the middle Atlantic coast. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20
Google Scholar
Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1(2):65–72
Article
Google Scholar