Skip to main content

Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

Abstract

Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Adams MS, McCracken MD (1974) Seasonal production of the Myriophyllum component of the littoral of Lake Wingra, Wisconsin. J Ecol 62(2):457–465. doi:10.2307/2258991

    Article  Google Scholar 

  • Asaeda T, Sharma P, Rajapakse L (2008) Seasonal patterns of carbohydrate translocation and synthesis of structural carbon components in Typha Angustifolia. Hydrobiologia 607:87–101. doi:10.1007/s10750-008-9369-1

    Article  CAS  Google Scholar 

  • Atwater BF (1980) Attempts to correlate the late quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelomne. Ph.D. dissertation, University of Delaware

  • Battle JM, Golladay SW (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. Am Midl Nat 146:128–145. doi:10.1674/0003-0031(2001)146[0128:HIOBOL]2.0.CO;2

    Article  Google Scholar 

  • Best EPH, Visser HWC (1986) Seasonal growth of the submerged macrophyte Ceratophyllum demersum L. in mesotrophic Lake Vechen in relation to isolation, temperature and reserve carbohydrates. Hydrobiologia 148(3):231–243. doi:10.1007/BF00017526

    Article  Google Scholar 

  • Bradbury IK, Hofstra G (1976) Vegetation death and its importance to primary production measurements. Ecology 57:209–211. doi:10.2307/1936414

    Article  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24(11):1089–1099. doi:10.1016/0038-0717(92)90058-6

    Article  CAS  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition, and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161. doi:10.1146/annurev.es.12.110181.001011

    Article  Google Scholar 

  • Brueske CC, Barrett CW (1994) Effects of vegetation and hydrologic load on sedimentation patterns in experimental wetland systems. Ecol Eng 3:429–447. doi:10.1016/0925-8574(94)00011-5

    Article  Google Scholar 

  • Carillo Y, Guarin A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Columbia). Aquat Bot 85:7–15. doi:10.1016/j.aquabot.2006.01.006

    Article  Google Scholar 

  • Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250. doi:10.1023/A:1009875226637

    Article  Google Scholar 

  • Chen R, Twilley RR (1999) A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118

    Google Scholar 

  • Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol Manag 13:671–684. doi:10.1007/s11273-005-0965-9

    Article  Google Scholar 

  • Chimner RA, Cooper DJ, Parton WJ (2002) Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22(1):100–110. doi:10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2

    Article  Google Scholar 

  • Corstanje R, Reddy KR, Portier KM (2006) Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat Bot 84:70–78. doi:10.1016/j.aquabot.2005.07.013

    Article  Google Scholar 

  • Craft CB, Richardson CJ (1993) Peat accretion and N, P and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3(3):446–458. doi:10.2307/1941914

    Article  Google Scholar 

  • Davis SM (1990) Sawgrass and cattail production in relation to nutrient supply in the Everglades. In: Sharitz RR, Gibbons JW (eds) Freshwater wetlands and wildlife. Office of Scientific and Technical Information, U.S. Department of Energy, Oak Ridge, pp 325–341

    Google Scholar 

  • Davis CB, van der Valk AG (1978) The decomposition of standing and fallen litter of Typha glauca and Scirpus fluviatilis. Can J Bot 56:662–674. doi:10.1139/b78-073

    Article  CAS  Google Scholar 

  • de Leeuw J, Wielemaker A, de Munck W, Herman PM (1996) Net aerial primary production (NAPP) of the marsh macrophyte Scirpus maritimus estimated by a combination of destructive and non-destructive sampling methods. Hydrobiologia 123:101–108

    Google Scholar 

  • Deverel SJ, Rojstaczer S (1996) Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resour Res 32:2359–2367. doi:10.1029/96WR01338

    Article  CAS  Google Scholar 

  • Deverel SJ, Wang B, Rojstaczer S (1998) Subsidence of organic soils, Sacramento-San Joaquin Delta, CA. In: Borchers JW (ed) Land subsidence histories and current research. Proceedings of the Dr. Joseph F. Poland symposium. Association of Engineering Geologist special publication no. 8. Star Publishing Co., Belmont, pp 489–502

  • Dickerman JA, Stewart AA, Wetzel RG (1986) Estimates of net annual aboveground production: sensitivity to sampling frequency. Ecology 67(3):650–659. doi:10.2307/1937689

    Article  Google Scholar 

  • Ennabili A, Ater M, Radoux M (1998) Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat Bot 62:45–56. doi:10.1016/S0304-3770(98)00075-8

    Article  Google Scholar 

  • Fraser LH, Kernezis JP (2005) A comparative assessment of seedling survival and biomass accumulation for fourteen different wetland plant species grown under minor water-depth differences. Wetlands 25(3):520–530. doi:10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2

    Article  Google Scholar 

  • Frockling S, Roulet NT, Moore TR, Richard PJH, Richard PJH, Lavoie M, Muller SD (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems (N Y, Print) 4(5):479–498. doi:10.1007/s10021-001-0105-1

    Article  Google Scholar 

  • Garbey C, Thiebaut G, Muller S (2006) An experimental study of the plastic responses of Ranunuculus peltatus Schrank to four environmental parameters. Hydrobiologia 570:41–46. doi:10.1007/s10750-006-0159-3

    Article  Google Scholar 

  • Garver FG, Dubbe DR, Pratt DC (1988) Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquat Bot 32:115–127. doi:10.1016/0304-3770(88)90092-7

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:3–31. doi:10.1046/j.1469-8137.2000.00676.x

    Article  Google Scholar 

  • Giroux JF, Bedard J (1988) Estimating above- and below-ground macrophyte production in Scirpus tidal marshes. Can J Bot 66:368–374. doi:10.1139/b88-059

    Article  Google Scholar 

  • Gordon DM, Sand-Jensen K (1990) Effects of O2, pH and DIC on net-O2 evolution by marine macroalgae. Mar Biol (Berl) 106:445–451. doi:10.1007/BF01344325

    Article  Google Scholar 

  • Gosselink JG, Turner RE (1978) The role of hydrology in freshwater wetland ecosystems. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York

    Google Scholar 

  • Grace JB (1989) Effects of water depth on Typha latifolia and Typha domingensis. Am J Bot 76(5):762–768. doi:10.2307/2444423

    Article  Google Scholar 

  • Harter SK, Mitsch WJ (2003) Patterns of short-term sedimentation in a freshwater created marsh. J Environ Qual 32:325–334

    CAS  PubMed  Google Scholar 

  • Hietz P (1992) Decomposition and nutrient dynamics of reed (Phragmites austalis (Cav.) Trin. Ex Steud.) litter in Lake Neusiedl, Austria. Aquat Bot 43:211–230. doi:10.1016/0304-3770(92)90068-T

    Article  CAS  Google Scholar 

  • Karagatzides JD, Hutchinson I (1991) Intraspecific comparisons of biomass dynamics in Scirpus americanus and Scirpus maritimus on the Fraser River Delta. J Ecol 79:459–476. doi:10.2307/2260726

    Article  Google Scholar 

  • Keddy PA, Ellis TH (1985) Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Can J Bot 63:1876–1879

    Article  Google Scholar 

  • Kirby CJ, Gosselink JG (1976) Primary production in a Louisiana gulf coast Spartina alterniflora marsh. Ecology 57:1052–1059. doi:10.2307/1941070

    Article  Google Scholar 

  • Klopatek JM, Stearns FW (1978) Primary productivity of emergent marsh macrophytes in a Wisconsin freshwater marsh ecosystem. Am Midl Nat 100(2):320–332. doi:10.2307/2424831

    Article  Google Scholar 

  • Lee SY (1990) Net aerial primary productivity, litter production and decomposition of the reed Phragmites communis in a nature reserve in Hong Kong: management implications. Mar Ecol Prog Ser 66:161–173. doi:10.3354/meps066161

    Article  Google Scholar 

  • Linthurst RA, Reimold RJ (1978a) An evaluation of methods for estimating net aerial primary productivity of estuarine angiosperms. J Appl Ecol 15:919–931. doi:10.2307/2402787

    Article  Google Scholar 

  • Linthurst RA, Reimold RJ (1978b) Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59(5):945–955. doi:10.2307/1938546

    Article  Google Scholar 

  • McNaughton SJ (1975) r- and K-selection in Typha. Am Nat 109:251–262. doi:10.1086/282995

    Article  Google Scholar 

  • Miao S, Sindhoj E, Edelstein C (2008) Allometric relationships of field populations of two clonal species with contrasting life histories, Cladium jamaicense and Typha domingensis. Aquat Bot 88:1–9. doi:10.1016/j.aquabot.2007.08.001

    Article  Google Scholar 

  • Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828. doi:10.1046/j.0022-0477.2001.00602.x

    Article  Google Scholar 

  • Miller RL, Hastings L, Fujii R (2000) Hydrologic treatments affect gaseous carbon soil loss from organic soils, Twitchell Island, California, October 1995–December 1997. US Geological Survey, water resources investigations report, Sacramento, CA, 00-4042

  • Miller RL, Fram M, Fujii R, Wheeler G (2008) Subsidence reversal in a re-established wetland in the Sacramento-San Joaquin Delta, CA, USA. San Francisco Estuary and Water Science 6(3) article 1. Available from: http://repositories.cdlib.org/jmie/sfews/vol6/iss3/art1

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinold, New York

    Google Scholar 

  • Morris JT, Haskin B (1990) A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71(6):2209–2217. doi:10.2307/1938633

    Article  Google Scholar 

  • Mount J, Twiss R (2005) Subsidence, sea level rise, and seismicity in the Sacramento-San Joaquin Delta. San Fran Estuary Watershed Sci 3(1). Article 5

    Google Scholar 

  • Murayama S, Bakar ZA (1996) Decomposition of tropical peat soils 1. Decomposition kinetics of organic matter of peat soils. Jpn Agric Res Q 30:145–151

    Google Scholar 

  • Neill C (1990) Nutrient limitation of hardstem bulrush (Scirpus acutus Muhl.) in a Manitoba interlake region marsh. Wetlands 10(1):69–76

    Google Scholar 

  • Pearsall WH, Gorham E (1956) Production ecology I. Standing crops of natural vegetation. Oikos 7(11):193–201

    Article  Google Scholar 

  • Penfound WT (1956) Primary production of vascular aquatic plants. Limnol Oceanogr 1(2):92–101

    Google Scholar 

  • Pratolongo P, Vicari R, Kandus P, Malvarez I (2005) A new method for evaluating net aboveground primary production (NAPP) of Scirpus gigantus (Kunth). Wetlands 25(1):228–232. doi:10.1672/0277-5212(2005)025[0228:ANMFEN]2.0.CO;2

    Article  Google Scholar 

  • Reddy KR (1981) Diel variations of certain physico-chemical parameters of water in selected aquatic systems. Hydrobiologia 85:201–207. doi:10.1007/BF00017610

    Article  Google Scholar 

  • Reed DJ (2002) Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J Coast Res 36(special issue):605–611

    Google Scholar 

  • Rocha AV, Potts DL, Goulden ML (2008) Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh. J Geophys Res 113:G04020. doi:10.1029/2008JG00713.2008

    Article  CAS  Google Scholar 

  • Rodgers JH Jr, Mckevitt ME, Hammerlund DO, Dickson KL, Cairns J Jr (1983) Primary production and decomposition of submerged and emergent aquatic plants of two Appalacian rivers. In: Fontaine TDIII, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Sharitz RR, Phillips SC (2006) Development of wetland plant communities. In: Batzer PB, Sharitz RR (eds) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley

    Google Scholar 

  • Sharma P, Asaeda T, Fujino T (2008) Effect of water depth on the rhizome dynamics of T. angustifolia. Wetlands Ecol Manag 16:43–49. doi:10.1007/s11273-007-9055-5

    Article  Google Scholar 

  • Simpson RL, Whigham DF, Walker R (1978) Seasonal patterns of nutrient movement in a freshwater tidal marsh. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20

    Google Scholar 

  • Smith SG (1987) Typha: its taxonomy and the ecological significance of hybrids. Arch Hydrobiol 27:29–138

    Google Scholar 

  • Smith LM, Kadlec JA (1985) Fire and herbivory in a Great Salt Lake marsh. Ecology 66(1):259–265. doi:10.2307/1941326

    Article  Google Scholar 

  • Squires MM, Lesack LFW (2003) The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenkie Delta. Can J Fish Aquat Sci 60:333–343. doi:10.1139/f03-027

    Article  CAS  Google Scholar 

  • Squires L, van der Valk AG (1992) Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can J Bot 70:1860–1867. doi:10.1139/b92-230

    Article  Google Scholar 

  • Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74:573–581

    Google Scholar 

  • Tanner CC (1994) Growth and nutrition of Schoenoplectus validus in agricultural wastewaters. Aquat Bot 47:131–153. doi:10.1016/0304-3770(94)90010-8

    Article  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104. doi:10.2307/1938416

    Article  Google Scholar 

  • Thursby GB, Chintala MM, Stetson D, Wigland C, Champlin DM (2002) A rapid, non-destructive method for estimating aboveground biomass of salt marsh grasses. Wetlands 22(3):626–630. doi:10.1672/0277-5212(2002)022[0626:ARNDMF]2.0.CO;2

    Article  Google Scholar 

  • van der Valk AG, Attiwill PM (1984) Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat Bot 18:205–221. doi:10.1016/0304-3770(84)90062-7

    Article  Google Scholar 

  • Waters I, Shay JM (1992) Effect of water depth on population parameters of a Typha glauca stand. Can J Bot 70:349–351. doi:10.1139/b92-046

    Article  Google Scholar 

  • Westlake DF (1963) Comparisons of plant productivity. Biol Rev Camb Philos Soc 38:385–425. doi:10.1111/j.1469-185X.1963.tb00788.x

    Article  Google Scholar 

  • Whigham DF, Simpson RL (1978) The relationship between aboveground and belowground biomass of freshwater tidal macrophytes. Aquat Bot 5:355–364. doi:10.1016/0304-3770(78)90076-1

    Article  Google Scholar 

  • Whigham DF, McCormick J, Good RE, Simpson RL (1978) Biomass and primary production in freshwater tidal wetlands of the middle Atlantic coast. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20

    Google Scholar 

  • Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1(2):65–72

    Article  Google Scholar 

Download references

Acknowledgments

We owe great thanks to the California Department of Water Resources for long-term funding of this long-term research project. And, we would like to specially thank Lauren Hastings for her hard work getting the project started. Also, thanks to the many people who helped with data collection and site maintenance and repair on this study over all the years. Finally, thanks to Allison Brown, Lisa Marie Windham Myers, and the reviewers for Wetlands, Ecology, and Management for their helpful comments and suggestions for this manuscript. It is all greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Miller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, R.L., Fujii, R. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California. Wetlands Ecol Manage 18, 1–16 (2010). https://doi.org/10.1007/s11273-009-9143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-009-9143-9

Keywords

  • Freshwater wetland
  • Emergent marsh
  • Primary productivity
  • Biomass
  • Typha
  • Schoenoplectus acutus