Skip to main content

Advertisement

Log in

Seasonal nutrient fluxes variability of northern salt marshes: examples from the lower St. Lawrence Estuary

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

This study presents the tidal exchange of ammonium, nitrite + nitrate, phosphate and silicate between two salt marshes and adjacent estuarine waters. Marsh nutrient fluxes were evaluated for Pointe-au-Père and Pointe-aux-Épinettes salt marshes, both located along the south shore of the lower St. Lawrence Estuary in Rimouski area (QC, Canada). Using nutrients field data, high precision bathymetric records and a hydrodynamic numerical model (MIKE21-NHD) forced with predicted tides, nutrients fluxes were estimated through salt marsh outlet cross-sections at four different periods of the year 2004 (March, May, July and November). Calculated marsh nutrient fluxes are discussed in relation with stream inputs, biotic and abiotic marsh processes and the incidence of sea ice cover. In both marshes, the results show the occurrence of year-round and seaward NH4 + fluxes and landward NO2  + NO3 fluxes (ranging from 9.06 to 30.48 mg N day−1 m−2 and from −32.07 to −9.59 mg N day−1 m−2, respectively) as well as variable PO4 3− and Si(OH)4 fluxes (ranging from −3.73 to 6.34 mg P day−1 m−2 and from −29.19 to 21.91 mg Si day−1 m−2, respectively). These results suggest that NO2  + NO3 input to marshes can be a significant source of NH4 + through dissimilatory nitrate reduction to ammonium (DNRA). This NH4 +, accumulating in marsh sediment rather than being removed through coupled nitrification–denitrification or biological assimilation, is exported toward estuarine waters. From average P and Si tidal fluxes analysis, both salt marshes act as a sink during high productivity period (May and July) and as a source, supplying estuarine water during low productivity period (November and March).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott MB, McCowan AD, Warren IR (1981) Numerical modelling of free-surface flows that are two-dimensional in plan. In: Fischer HB (ed) Transport models for inland and coastal waters. Academic Press, New York

    Google Scholar 

  • Allard M, Champagne P (1980) Dynamique glacielle à la pointe d’Argentenay, île d’Orléans, Québec. Geogr Phys Quat 34:159–174

    Google Scholar 

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50. doi:10.3354/meps237041

    Article  CAS  Google Scholar 

  • Argow BA, FitzGerald DM (2006) Winter processes on northern salt marshes: evaluating the impact of in situ peat compaction due to ice loading, Wells, ME. Estuar Coast Shelf Sci 69:360–369. doi:10.1016/j.ecss.2006.05.006

    Article  Google Scholar 

  • Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267:696–697. doi:10.1038/267696a0

    Article  CAS  PubMed  Google Scholar 

  • Baldwin DS, Mitchell AM (2000) The effect of drying and re-flooding on sediment and soil nutrient dynamics of lowland river-floodingplain systems: a synthesis. Regul River 16:457–567. doi:10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B

    Article  Google Scholar 

  • Bernatchez P, Dubois J-M (2008) Seasonal quantification of coastal processes and cliff erosion on fine sediment shoreline in a cold temperate climate, north shore of the St. Lawrence maritime estuary. J Coast Res 24:169–180. doi:10.2112/04-0419.1

    Article  Google Scholar 

  • Blackburn TH, Nedwell DB, Wiebe WJ (1994) Active mineral cycling in a Jamaican seagrass sediment. Mar Ecol Prog Ser 110:233–239. doi:10.3354/meps110233

    Article  CAS  Google Scholar 

  • Boorman LA (1999) Salt marshes–present function and future change. Mangroves Salt Marshes 3:227–241. doi:10.1023/A:1009998812838

    Article  Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170:229–244

    Google Scholar 

  • Brooks PD, Campbell DH, Tonnessen KH, Heuer K (1999) Natural variability in N export headwater catchments: snow cover controls on ecosystem N retention. Hydrol Process 13:2191–2201. doi:10.1002/(SICI)1099-1085(199910)13:14/15<2191::AID-HYP849>3.0.CO;2-L

    Article  Google Scholar 

  • Campana ML (1998) The effect of Phargmites australis invasion on community processes in a tidal freshwater marsh. M.S. Thesis, College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, Virginia

  • Dame RF, Gardner LR (1993) Nutrient processing and the development of tidal creek ecosystems. Mar Chem 43:175–183. doi:10.1016/0304-4203(93)90223-B

    Article  CAS  Google Scholar 

  • Dame RF, Spurrier JD, Williams TM, Kjerfve B, Zingmark RG, Wolaver TG, Chrzanowski TH, Mckellar HN, Vernberg FJ (1991) Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Mar Ecol Prog Ser 72:153–166. doi:10.3354/meps072153

    Article  Google Scholar 

  • de la Lanza Espino G, Medina MAR (1993) Nutrient exchange between subtropical lagoons and the marine environment. Estuaries 16:273–279. doi:10.2307/1352500

    Article  CAS  Google Scholar 

  • Delille D, Fiala M, Kuparinen J, Kuosa H, Plessis C (2002) Seasonal changes in microbial biomass in the first-year ice of the Terre Adélie area (Antarctica). Aquat Microb Ecol 28:257–265. doi:10.3354/ame028257

    Article  Google Scholar 

  • Dionne J-C (1968) Action of shore ice on tidal flats of the St. Lawrence estuary. Marit Sedim 4:113–115

    Google Scholar 

  • Dionne J-C (1986) Érosion récente des marais intertidaux de l’estuaire du Saint-Laurent. Geogr Phys Quat 50:307–323

    Google Scholar 

  • Dionne J-C (1989) An estimate of shore ice action in a Spartina tidal marsh, St. Lawrence Estuary, Quebec, Canada. J Coast Res 5:281–295

    Google Scholar 

  • Dionne J-C (2003) Observations géomorphologiques sur les méga-blocs du secteur sud-est de la batture argileuse de la Baie à l’Orignal, au Parc du Bic, dans le Bas-Saint-Laurent (Québec). Geogr Phys Quat 57:95–101

    Google Scholar 

  • Dionne J-C (2004) Âge et taux moyen d’accretion verticale des schorres du Saint-Laurent estuarien, en particulier ceux de Montmagny et de Sainte-Anne-de-Beaupré, Québec. Geogr Phys Quat 58:73–108

    Google Scholar 

  • Drapeau G (1992) Dynamique sédimentaire des littoraux de l’estuaire du St-Laurent. Geogr Phys Quat 46:233–242

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    CAS  Google Scholar 

  • Fagherazzi S, Marani M, Blum LK (2004) Introduction: the coupled evolution of geomorphological and ecosystem structure in salt marshes. In: Fagherazzi S, Marani M, Blum LK (eds) The ecogeomorphology of tidal marshes. American Geophysical Union, USA

    Google Scholar 

  • Fan A, Jin X (1989) Tidal effect on nutrient exchange in Xiangshan Bay, China. Mar Chem 27:259–281. doi:10.1016/0304-4203(89)90051-0

    Article  CAS  Google Scholar 

  • Gächter R, Meyer JS (1993) The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253:103–121. doi:10.1007/BF00050731

    Article  Google Scholar 

  • Gardner LR, Kjerfve B (2006) Tidal fluxes of nutrients and suspended sediments at the North Inlet Winyah Bay National Estuarine Research Reserve. Estuar Coast Shelf Sci 70:682–692. doi:10.1016/j.ecss.2006.06.034

    Article  Google Scholar 

  • Gauthier B, Goudreau M (1983) Mares glacielles et non glacielles dans le marais salé de l’Isle-Verte, Estuaire du Saint-Laurent, Québec. Geogr Phys Quat 37:49–66

    Google Scholar 

  • Gradinger R, Zhang Q (1997) Vertical distribution of bacteria in Arctic sea ice from the Barents and Laptev Seas. Polar Biol 17:448–454. doi:10.1007/s003000050139

    Article  Google Scholar 

  • Groszkowski KM (1995) Denitrification in a tidal freshwater marsh. Senior Thesis, Harvard College, Cambridge, Massachusetts

  • Heinle DR, Flemer DA (1976) Flows of material between poorly flooded tidal marshes and an estuary. Mar Biol (Berl) 35:359–373. doi:10.1007/BF00386646

    Article  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal ecosystems. FEMS Microbiol Rev 23:563–590. doi:10.1111/j.1574-6976.1999.tb00414.x

    Article  CAS  PubMed  Google Scholar 

  • Hou LJ, Liu M, Jiang HY, Xu SY, Ou DN, Liu QM, Zhang BL (2003) Ammonium adsorption by tidal flat surface sediments from the Yangtze Estuary. Environ Geol 45:72–78. doi:10.1007/s00254-003-0858-2

    Article  CAS  Google Scholar 

  • Jickells T (2005) External inputs as a contributor to eutrophication problems. J Sea Res 54:58–69. doi:10.1016/j.seares.2005.02.006

    Article  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic sea ice. Appl Environ Microbiol 70:550–557. doi:10.1128/AEM.70.1.550-557.2004

    Article  CAS  PubMed  Google Scholar 

  • Justic D, Rabalais NN, Turner RE (1995) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30:41–46. doi:10.1016/0025-326X(94)00105-I

    Article  CAS  Google Scholar 

  • Koutitonsky VG, Gidas NK (1996) Real-time management of sewage disposal in the coastal zone. The global ocean-towards operational oceanography. Proc Oceanology Int 96(1):5–8 March, Brighton, UK

    Google Scholar 

  • Liu M, Hou L, Xu S, Ou D, Yang Y, Zhang B, Liu Q (2002) Adsorption of phosphate on tidal flat surface sediments from the Yangtze Estuary. Environ Geol 42:657–665. doi:10.1007/s00254-002-0574-3

    Article  CAS  Google Scholar 

  • Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4045. doi:10.1016/S0016-7037(97)00239-1

    Article  CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic Press, San Diego, p 604

    Google Scholar 

  • Morisette A (2006) Évolution côtière haute résolution de la région de Longue-Rive-Forestville, Côte Nord de l’estuaire maritime du Saint-Laurent. M.Sc. Thesis, Université du Québec à Rimouski, Québec, Canada

  • Neubauer SC, Anderson IC, Neikirk BB (2005) Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28:909–922. doi:10.1007/BF02696019

    Article  CAS  Google Scholar 

  • Nixon SW (1980) Between coastal marshes and coastal waters-a review of twenty years of speculation and research in the role of salt marshes in estuarine productivity and water chemistry. In: Estuarine and wetland processes. Plenum, New York, pp 437–525

  • Odum EP, de la Cruz AA (1967) Particulate organic detritus in a Georgia salt-marsh-estuarine ecosystem. In: Lauff GH (ed) Estuaries. American Association for the Advancement of Science, Washington, DC, pp 383–388

    Google Scholar 

  • Pejrup M, Andersen TJ (2000) The influence of ice on sediment transport, deposition and reworking in a temperate mudflat area, the Danish Wadden Sea. Cont Shelf Res 20:1621–1634. doi:10.1016/S0278-4343(00)00040-6

    Article  Google Scholar 

  • Poulin P (2008) Cycle biogéochimique de l’azote dans l’Estuaire du Saint-Laurent; rôle des marais côtiers. Ph.D. Thesis, Université du Québec à Rimouski, Québec, Canada

  • Poulin P, Pelletier E (2007) Determination of ammonium using a microplate-based fluorometric technique. Talanta 71:1500–1506. doi:10.1016/j.talanta.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Poulin P, Pelletier E, St-Louis R (2007) Seasonal variability of denitrification efficiency in northern salt marshes: An example form the St. Lawrence Estuary. Mar Environ Res 63:490–505. doi:10.1016/j.marenvres.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  • Rabouille C, Mackenzie FT, Ver LM (2001) Influence of the human perturbation on carbon, nitrogen and oxygen biogeochemical cycles in the global ocean. Geochim Cosmochim Acta 65:3615–3641. doi:10.1016/S0016-7037(01)00760-8

    Article  CAS  Google Scholar 

  • Reimold RJ, Daiber FC (1970) Dissolved phosphorus concentrations in a natural salt-marsh of Delaware. Hydrobiologia 36:361–371. doi:10.1007/BF00039795

    Article  CAS  Google Scholar 

  • Riegman R, Noordeloos AAM, Cadee GC (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the north-sea. Mar Biol (Berl) 112:479–484. doi:10.1007/BF00356293

    Article  Google Scholar 

  • Robinson AD, Nedwell BD, Harrison RM (1998) Hypernutrified estuaries as a source of N2O emission to the atmosphere: the estuary of the River Colne. Essex, UK. Mar Ecol Prog Ser 164:59–71. doi:10.3354/meps164059

    Article  CAS  Google Scholar 

  • Rocha C (1998) Rhythmic ammonium regeneration and flushing in intertidal sediment of the Sado estuary. Limnol Oceanogr 43:823–831

    CAS  Google Scholar 

  • Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139:347–378

    CAS  Google Scholar 

  • Saucier FJ, Roy F, Gilbert D (2003) Modeling the formation and circulation processes of water masses and the sea ice in the Gulf of St Lawrence, Canada. J Geophys Res 108:3269–3289. doi:10.1029/2000JC000686

    Article  Google Scholar 

  • Sérodes J-B, Dubé M (1983) Dynamique Sédimentaire d’un estran à spartines. Nat Can 110:11–26

    Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    CAS  PubMed  Google Scholar 

  • Strickland JDH, Parson TR (1972) A practical handbook of seawater analysis. Fisheries Research of Canada, Ottawa, p 310

    Google Scholar 

  • Struyf E, Van Damme S, Gribsholt B, Meire P (2005) Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde Estuary, Belgium). Hydrobiologia 540:69–77. doi:10.1007/s10750-004-7104-0

    Article  CAS  Google Scholar 

  • Sullivan CW, Palmisano AC (1984) Sea ice microbial communities–distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795

    PubMed  CAS  Google Scholar 

  • Therriault J-C, Levasseur M (1985) Control of phytoplankton production in the lower St. Lawrence Estuary: light and freshwater runoff. Nat Can 112:77–96

    Google Scholar 

  • Thibodeau B, de Vernal A, Mucci A (2006) Recent eutrophication and consequent hypoxia in the bottom waters of the lower St Lawrence Estuary: micropaleontological and geochemical evidence. Mar Geol 231:37–50. doi:10.1016/j.margeo.2006.05.010

    Article  CAS  Google Scholar 

  • Trousselier M, Bouvy M, Courties C, Dupuy C (1997) Variation of carbon content among bacterial species under starvation condition. Aquat Microb Ecol 13:113–119. doi:10.3354/ame013113

    Article  Google Scholar 

  • Valiela I, Teal JM, Volkmann S, Shafer D, Carpenter EJ (1978) Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchange and inputs by precipitation and ground water. Limnol Oceanogr 23:798–812

    Article  CAS  Google Scholar 

  • Valiela I, Cole ML, McClelland J, Hauxwell J, Cebrian J, Joye SB (2000) Role of salt marshes as part of coastal landscapes. In: Weinstein MP, Kruger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 23–38

    Google Scholar 

  • Vepraskas MJ, Faulkner SP (2001) Redox chemistry of hidrics soils. In: Richarson JL, Vepraskas MJ (eds) Wetland soils. Florida, Lewis Publishers, pp 85–107

    Google Scholar 

  • Wang F, Juniper SK, Pelegri SP, Macko SA (2003) Denitrification in sediment of the Laurentian trough, St. Lawrence Estuary, Québec, Canada. Estuar Coast Shelf Sci 57:515–522. doi:10.1016/S0272-7714(02)00396-7

    Article  CAS  Google Scholar 

  • Wentzel MC, Lötter LH, Loewenthal RE, Marais GR (1986) Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal—a biochemical model. Water SA 12:209–224

    CAS  Google Scholar 

  • Willey JD, Spivack A (1997) Dissolved silica concentrations and reactions in pore waters from continental slope sediments offshore from Cape Hatteras, North Carolina, USA. Mar Chem 56:227–238. doi:10.1016/S0304-4203(96)00071-0

    Article  CAS  Google Scholar 

  • Wolaver TG, Spurrier JD (1988) The exchange of phosphorus between a euhaline vegetated marsh and the adjacent tidal creek. Estuar Coast Shelf Sci 28:203–214. doi:10.1016/0272-7714(88)90050-9

    Article  Google Scholar 

  • Zeng L, Chen C, Zhang FY (2004) Development of water quality model in the Satilla River Estuary, Georgia. Ecol model 178:457–482

    Article  CAS  Google Scholar 

  • Ziegler S, Velinsky DJ, Swarth CM, Fogel ML (1999) Sediment-water exchange of dissolved inorganic nitrogen in a freshwater tidal wetland. Technical report of the Jug Bay Wetland Sanctuary, Lothian, Maryland

Download references

Acknowledgments

This research was funded by Natural Science and Engineering Research Council (NSERC-Discovery grant E.P.) and the Canada Research Chair in Ecotoxicology (E.P.). The authors gratefully acknowledge ISMER technical support as well as Dr. K. Lemarchand and M. Desève for biological data acquisition. This paper is a contribution to Quebec-Ocean network (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Émilien Pelletier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulin, P., Pelletier, É., Koutitonski, V.G. et al. Seasonal nutrient fluxes variability of northern salt marshes: examples from the lower St. Lawrence Estuary. Wetlands Ecol Manage 17, 655–673 (2009). https://doi.org/10.1007/s11273-009-9141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-009-9141-y

Keywords

Navigation