Skip to main content
Log in

Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Biomass and aboveground net primary production (ANPP) in a monospecific pioneer stand of a mangrove Kandelia obovata (S., L.) Yong were quantified. The estimated biomasses in leaves, branches, stems, roots, aboveground and total were 5.61 (3.68%), 28.8 (18.9%), 46.1 (30.2%), 71.8 (47.2%), 80.5 (52.8%) and 152 Mg ha−1 (100%), respectively. Stem phytomass increment per tree was estimated using allometric relationships and stem analysis. Stem volume without bark of harvested trees showed a strong allometric relationship with D 20.1 H (D 0.1, diameter at a height of one-tenth of tree height H) (R 2 = 0.924). Annual stem volume increment per tree showed a strong allometric relationship with D 20.1 H (R 2 = 0.860). Litterfall rate ranges from 3.87 to 56.1 kg ha−1 day−1 for leaves and 0.177 to 46.2 kg ha−1 day−1 for branches. Seasonal changes of litterfall rate were observed, which showed a peak during wet season (August–September). Total annual litterfall was estimated as 10.6 Mg ha−1 year−1, in which 68.2% was contributed by the leaves. The ANPP in the K. obovata stand was 29.9–32.1 Mg ha−1 year−1, which is ca. 2.8–3.0 times of annual litterfall. The growth efficiency (aboveground biomass increment/LAI) was 5.35–5.98 Mg ha−1 year−1. The low leaf longevity (9.3 months) and high growth efficiency of K. obovata makes it a highly productive mangrove species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:7–122

    Article  Google Scholar 

  • Alongi DM, Clough BF, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60

    Article  CAS  Google Scholar 

  • Alongi DM, Wattayakorn AG, Tirendi F, Dixon P (2004) Nutrient capital in different aged forests of the mangrove Rhizophora apiculata. Bot Mar 47:116–124

    Article  CAS  Google Scholar 

  • Amarasinghe MD, Balasubrananiam S (1992) Net primary productivity of two mangrove forest stands on the northwestern coast of Sri Lanka. Hydrobiologia 247:37–47

    Article  Google Scholar 

  • Avery TE, Burkhart HE (2002) Forest measurements. McGraw Hill Series in Forest Resources, New York, 456 pp

  • Baily RL, Dell TR (1973) Quantifying diameter distribution with the Weibull function. For Sci 19:97–104

    Google Scholar 

  • Baskerville GL (1966) Dry matter production in immature balsam fir stands: roots, lesser vegetation and total stand. For Sci 12:9–53

    Google Scholar 

  • Binkley D, Ryan MG (1998) Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia facaltaria. For Ecol Manage 112:79–85

    Article  Google Scholar 

  • Blasco F, Aizpuru M, Gers C (2001) Depletion of the mangroves of Continental Asia. Wetlands Ecol Manage 9:245–256

    Article  Google Scholar 

  • Briggs SV (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2:369–373

    Article  Google Scholar 

  • Caroline AO, Erftemeijer PLA (2002) Phenology, litterfall and nutrient resorption in Avicennia marina (Forssk) Vierh in Gazi Bay, Kenya. Trees 16:167–171

    Article  CAS  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Niklas KJ (2007) Above- and below-ground biomass relationships across 1534 forested communities. Ann Bot 99:95–102

    Article  PubMed  Google Scholar 

  • Chmura DJ, Rahman MS, Tjoelker MG (2007) Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine. For Ecol Manage 243:219–230

    Article  Google Scholar 

  • Christensen B (1978) Biomass and primary productivity of Rhizophora apiculata Bl in a mangrove of southern Thailand. Aquat Bot 4:43–52

    Article  Google Scholar 

  • Clough BF, Attiwill PM (1975) Nutrient cycling in a community of Avicennia marina in a temperate region of Australia. In: Walsh GE, Snedaker SC, Teas HJ (eds) Proceedings of the international symposium on biology and management of mangroves, vol 1. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, pp 137–146

  • Clough BF, Scott K (1989) Allometric relationships for estimating aboveground biomass in six mangrove species. For Ecol Manage 27:117–127

    Article  Google Scholar 

  • Clough BF, Dixon P, Dalhaus O (1997) Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Aust J Bot 45:1023–1031

    Article  Google Scholar 

  • Coble DW, Milner KS, Marshall JD (2001) Above- and below-ground production of trees and other vegetation on contrasting aspects in western Montana: a case study. For Ecol Manage 142:231–241

    Article  Google Scholar 

  • Comley BWT, McGuinness KA (2005) Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust J Bot 53:431–436

    Article  Google Scholar 

  • Day JW, Conner WH, Ley-Lou F, Day RH, Navarro AM (1987) The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquat Bot 27:267–284

    Article  Google Scholar 

  • Day JW, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Alvarez-Guillen H, Day R, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55:39–60

    Article  Google Scholar 

  • Duke NC, Bunt JS, Williams WT (1984) Observations on the floral and vegetative phenologies of north-eastern Australian mangroves. Aust J Bot 32:87–99

    Article  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning across seed plants. Science 295:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115:39–53

    Article  Google Scholar 

  • Golley FB, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43:9–19

    Article  CAS  Google Scholar 

  • Golley FB, McGinnis JT, Clements RT, Child Gl, Duever MJ (1975) Mineral cycling in a tropical moist forest ecosystem. University of Georgia press, Athens

    Google Scholar 

  • Gong WK, Ong JE (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar Coast Shelf Sci 31:519–530

    Article  CAS  Google Scholar 

  • Hagihara A, Hozumi K (1983) Studies on the primary production in a Chamaecyparis obtusa plantation. J Jpn For Soc 65:357–365

    Google Scholar 

  • Hagihara A, Yokota T, Ogawa K (1993) Allometric relations in hinoki (Chamaecyparis obtusa (Sieb et Zucc) Endl) trees. Bull Nagoya Univ For 12:11–29

    Google Scholar 

  • Hom JL, Oechel WC (1983) The photosynthetic capacity, nutrient content, and nutrient use efficiency of different needle age-classes of black spruce (Picea mariana) found in interior Alaska. Can J For Res 13:834–839

    Article  CAS  Google Scholar 

  • Hoque AKF (2003) A review on the impact of oil spillage on the coastal ecosystems with particular reference to mangroves for its extrapolation to the impact of proposed oil and gas exploration in Block 5 on the Sundarbans ecosystem. In: Rahman MA, Shah MS, Murtaza MG, Matin MA (eds) Proceedings of the National conference on the potential impact of oil and gas exploration in Block 5 on the Sundarbans ecosystem, December 2003, CISS, Khulna University, Bangladesh, pp 57–66

  • Hoque MA, Sarkar MSKA, Khan SAKU, Moral MAH, Khurram AKM (2006) Present status of salinity rise in Sundarbans area and its effect on Sundari (Heritiera fomes) species. Res J Agric Biol Sci 2:115–121

    Google Scholar 

  • Hossain M, Othman S, Bujang JS, Kusnan M (2005) Litter flux in Kuala Selangor Nature Park mangrove forest, Malaysia. Ind J For 28:233–238

    Google Scholar 

  • Hozumi K, Yoda K, Kokawa S, Kira T (1969) Production ecology of tropical rain forest in southern Cambodia I. Plant biomass. Nat Life SE Asia 6:1–51

    Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of México. Ecology 80:1892–1907

    Google Scholar 

  • Hussain Z, Acharya G (1994) Mangroves of the Sundarbans, Bangladesh, vol 2. IUCN, Bangkok

    Google Scholar 

  • Iftekhar MS, Islam R (2004) Degeneration of Bangladesh Sundarban: a management issue. Int For Rev 6:123–135

    Article  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A, Ogawa K (2004) Interception of photosynthetic photon flux density in a mangrove stand of Kandelia candel (L) Druce. J For Res 9:205–210

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2005) Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees 19:266–272

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetlands Ecol Manage 15:141–153

    Article  CAS  Google Scholar 

  • Kimmins JP (2004) Forest Ecology—A foundation for sustainable forest management and environmental ethics in forestry. Prentice Hall, New Jersey, pp 180–181

    Google Scholar 

  • Kira T, Yabuki K (1978) Primary production rates in Minamata forest. In: Kira T, Ono Y, Hosokawa T (eds) Biological production in a warm temperate evergreen Oak Forest of Japan. JIBP synthesis, vol 18. University of Tokyo Press, Tokyo, pp 82–88

    Google Scholar 

  • Kira T, Ogawa H, Yoda K, Ogino K (1967) Comparative ecological studies on three main types of forest vegetation in Thailand. Part IV: dry-matter production, with special reference to the Khao Chong rainforest. Nat Life SE Asia 5:149–174

    Google Scholar 

  • Komiyama A, Ogino K, Aksornkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. J Trop Ecol 3:97–108

    Article  Google Scholar 

  • Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Ishihara S, Miyagi T (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr) CB Rob) forest. For Ecol Manage 139:127–134

    Article  Google Scholar 

  • Kusmana C, Sabiham S, Abe K, Watanabe H (1992) An estimation of above ground tree biomass of a mangrove forest in East Sumatra, Indonesia. Tropics 1:243–257

    Article  Google Scholar 

  • Leach GJ, Burgin S (1985) Litter production and seasonality of mangroves in Papua New Guinea. Aquat Bot 23:215–224

    Article  Google Scholar 

  • Lee SY (1989) Litter production and turnover of the mangrove Kandelia candel (L.) Druce in Hong Kong tidal shrimp pond. Estuar Coast Shelf Sci 29:75–87

    Article  Google Scholar 

  • Lee SY (1990) Primary productivity and particulate organic matter flow in an estuarine mangrove-wetland in Hong Kong. Mar Biol 106:453–463

    Article  Google Scholar 

  • Lee SY (1991) Herbivory as an ecological process in a Kandelia candel (Rhizophoraceae) mangal in Hong Kong. J Trop Ecol 7:337–348

    Article  Google Scholar 

  • Li MS (1997) Nutrient dynamics of a Futian Mangrove Forest in Shenzhen, South China. Estuar Coast Shelf Sci 45:463–472

    Article  CAS  Google Scholar 

  • Lodhiyal N, Lodhiyal LS (2003) Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India. For Ecol Manage 176:217–235

    Article  Google Scholar 

  • Lopez-Portillo J, Ezcurra E (1985) Litterfall of Avicennia germinas L. in a one-year cycle in a mudflat at the Laguna de Mecoacan, Tabasco, Mexico. Biotropica 17:186–190

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Machiwa F, Hallberg RO (2002) An empirical model of the fate of organic carbon in a mangrove forest partly affected by anthropogenic activity. Ecol Model 147:69–83

    Article  CAS  Google Scholar 

  • Mackey AP (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh near Brisbane, south-eastern Queensland. Aust J Mar Freshw Res 44:721–725

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  PubMed  CAS  Google Scholar 

  • Nakasuga T (1979) Analysis of the mangrove stand (in Japanese with English summery). Bull Coll Agr Univ Ryukyus 26:413–519

    Google Scholar 

  • Newman GS, Arthur MA, Muller RN (2006) Above- and below-ground net primary production in a temperate mixed deciduous forest. Ecosystems 9:317–329

    Article  Google Scholar 

  • Ogawa H (1978) Litter production and carbon cycling in Pasoh forest. Malay Nat J 30:367–373

    Google Scholar 

  • Ogawa H, Yoda K, Ogino K, Kira T (1965) Comparative ecological studies on three main type of forest vegetation in Thailand. Nat Life SE Asia 4:49–80

    Google Scholar 

  • Ong JE, Gong WK, Wong CH (2004) Allometry and partitioning of the mangrove Rhizophora apiculata. For Ecol Manage 188:395–408

    Article  Google Scholar 

  • Ovington JD (1957) Dry matter production by Pinus silvestris L. Ann Bot 21:288–313

    Google Scholar 

  • Ozalp M, Conner WH, Lockaby BG (2007) Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA. For Ecol Manage 245:31–43

    Article  Google Scholar 

  • Poungparn S, Komiyama A, Patanaponpaipoon P, Jintana V, Sangatiean T, Tanapermpool P, Piriyayota S, Maknual C, Kato S (2002) Site-independent allometric relationships for estimating above-ground weights of mangroves. Tropics 12:147–158

    Article  Google Scholar 

  • Putz FE, Chan HT (1986) Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For Ecol Manage 17:211–230

    Article  Google Scholar 

  • Rapp M, Regina IS, Rico M, Gallego HA (1999) Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. For Ecol Manage 119:39–49

    Article  Google Scholar 

  • Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbon fluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 293–326

    Google Scholar 

  • Rogers HM (2002) Litterfall, decomposition and nutrient release in a lowland tropical rain forest, Morobe Province, Papua New Guinea. J Trop Ecol 18:449–456

    Article  Google Scholar 

  • Ross MS, Ruiz PL, Telesnicki GJ, Meeder JF (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecol Manage 9:27–37

    Article  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, Dordrecht, pp 50–57

    Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96:293–299

    Article  Google Scholar 

  • Saintilan N (1997a) Above- and below-ground biomass of mangroves in a sub-tropical estuary. Mar Freshw Res 48:601–604

    Article  Google Scholar 

  • Saintilan N (1997b) Above and below ground biomass of two species of mangrove on the Hawkesbury River estuary, New South Wales. Mar Freshw Res 48:47–152

    Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398

    Article  Google Scholar 

  • Sheue C, Liu H, Yong JWH (2003) Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 52:287–294

    Article  Google Scholar 

  • Soares MLG, Schaeffer-Novelli Y (2005) Above-ground biomass of mangrove species I analysis of models. Estuar Coast Shelf Sci 65:1–18

    Article  Google Scholar 

  • Stewart HTL, Flinn DW, Aebevli BC (1979) Above-ground biomass of a mixed eucalypt forest in eastern Victoria. Aust J Bot 27:725–740

    Article  Google Scholar 

  • Strub MR, Burkhart HE (1975) A class-interval-free method for obtaining yields from diameter distribution. For Sci 21:67–69

    Google Scholar 

  • Sukardjo S, Yamada I (1992) Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Centrlal Java, Indonesia. For Ecol Manage 49:195–209

    Article  Google Scholar 

  • Suzuki E, Tagawa H (1983) Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. Jpn J Ecol 33:231–234

    Google Scholar 

  • Tabuchi R, Ogino K, Aksornkoae S, Sabhasri S (1983) Fine root amount of mangrove forest: a preliminary survey. Ind J Plant Sci 1:31–41

    Google Scholar 

  • Tam NFY, Wong YS, Lan CY, Chen GZ (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295:193–201

    Article  Google Scholar 

  • Tamai S, Nakasuga T, Tabuchi R, Ogino K (1986) Standing biomass of mangrove forests in southern Thailand. J Jpn For Soc 68:384–388

    Google Scholar 

  • Tanabe H, Nakano T, Mimura M, Abe Y, Mariko S (2003) Biomass and net primary production of a Pinus densiflora forest established on a lava flow of Mt Fuji in central Japan. J For Res 8:247–252

    Article  CAS  Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above- and below-ground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For Ecol Manage 193:297–306

    Article  Google Scholar 

  • Teas HJ (1979) Silviculture with saline water. In: Hollaender A (ed) The biosaline concept. Plenum Publishing Corporation, New York, pp 117–161

    Google Scholar 

  • Thi Ha H, Duarte CM, Tri NH, Terrados J, Borum J (2003) Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam. Estuar Coast Shelf Sci 58:435–444

    Article  Google Scholar 

  • Toma T, Ogino K (1995) Soil water movement of a mangrove forest in Halmahera Island, east Indonesia. Tropics 4:187–200

    Article  Google Scholar 

  • Trumbore SE, Davidson EA, Camargo BP, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Glob Biogeochem Cycl 9:515–528

    Article  CAS  Google Scholar 

  • Turner MG, Tinker DB, Romme WH, Kashian DM, Litton CM (2004) Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park. Ecosystems 7:751–775

    Article  Google Scholar 

  • Twilley RR, Lugo AE, Patterson-Zucca C (1986) Litter production and turnover rates in basin mangrove forests in southwest Florida. Ecology 67:670–683

    Article  Google Scholar 

  • Weibull W (1949) A statistical analysis of the size of Crytoidea in albatross cores from the East Pacific Ocean. Nature 164:1047–1048

    Article  Google Scholar 

  • Woodroffe CD (1984) Litterfall beneath Rhizophora stylosa Griff, Vaitupu, Tuvalu, South Pacific. Aquat Bot 18:249–255

    Article  Google Scholar 

  • Yamakura T, Saito H, Shidei T (1972) Production and structure of underground part of Hinoki (Chamaecyparis obtusa) stand. 1. Estimation of root production by means of root analysis. J Jpn For Soc 54:118–125

    Google Scholar 

  • Zhao M, Zhou G (2005) Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. For Ecol Manage 207:295–313

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. L. Alhamd and Dr. S. M. Feroz who provided invaluable assistance for the collection of data. We also thank the Ministry of Environment, Japan, for access to the wildlife sanctuary, and Tomigusuku Community for permitting us the use of their land. This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (nos. 16201009 and 16651009), and by the twenty first century COE program of University of the Ryukyus, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nabiul Islam Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.N.I., Suwa, R. & Hagihara, A. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecol Manage 17, 585–599 (2009). https://doi.org/10.1007/s11273-009-9136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-009-9136-8

Keywords

Navigation